
www.embedded-world.eu 

 

 

 

Meeting Functional Safety Standards on Algorithm 

Implementation for FPGA and ASIC in a Dynamic 

Automotive Environment 

  

 

 

 
Abstract— FPGAs and ASICs are playing a greater role across 

an increasing variety of automotive systems and applications 

because of their high throughput, low latency, and superior per-

watt performance. However, we see different challenges related to 

their development in the automotive industry: There is a need for 

efficient inter-team communication and collaboration in 

multidisciplinary FPGA/programmable SoC and ASIC projects. 

Changing requirements and shrinking design cycles require the 

ability to react faster. Standards, such as ISO 26262 for functional 

safety, must be fulfilled, while shorter project deadlines must be 

met. Finally, the global chip shortage drives the need for 

hardware-independent portable workflows, enabling more rapid 

adaptation to changes in the supply chain and smoother 

transitions from FPGAs to ASICs. This work explores an 

integrated workflow for designing and implementing signal 

processing, control design, and vision algorithms on FPGAs, 

programmable SoCs, and ASICs to address these challenges. We 

briefly cover the process-spanning requirements of authoring, 

architectural modeling, and modeling for HDL implementation, 

with verification and validation at each step. Furthermore, we 

cover related hardware/software codesign aspects. We show how 

an integrated, hardware-independent, and prequalified toolchain 

enables users to streamline ISO 26262 certification. 

Keywords—FPGA, SoC, ASIC, ISO26262, Functional Safety 

I.  INTRODUCTION  

The electrical and electronics (E/E) components market is 
projected to grow at a 5.6% compound annual growth rate 
(CAGR). Autonomous driving and electrification of the 
powertrain are among the major drivers behind this trend [1]. 
Regarding ADAS/AD sensor systems, Radar and Lidar are 
expected to grow by 19.5% [2] and 13.5% [3], respectively. As 

the automotive industry climbs the ladder of autonomy levels, 
sensor resolution increases exponentially, requiring an 
enormous amount of (pre-) processing to convert the raw data 
into point clouds and detected objects. The complexity of signal 
processing algorithms is also growing to meet performance 
requirements. The need for higher throughput, low latency, and 
improved per-watt requirements often cannot be met with CPU 
or GPU implementations. In electrification, power electronics 
control is one major application. Power-efficient and low-
vibration motor control requires complex algorithms with high 
sampling frequency and reaction times that often exceed what is 
achievable on today’s CPUs [4]. 

 As a result, FPGA and ASIC are increasingly the technology 
of choice, often used as application-specific accelerators on 
chips. At the same time, using embedded FPGAs (eFPGAs) is 
an emerging trend. FPGAs may be replaced with ASICs 
whenever justified by cost savings due to increases in production 
volume or the need for lower power requirements.  

 The growing complexity of FPGA and ASIC designs is 
challenging conventional development methodologies, leading 
to a disproportionate increase in required verification. SoC 
designs add another layer of verification complexity due to 
hardware/software interactions [5], especially in the presence of 
multi-core and multi-tasking subsystems. 

 The key question we address here is how to efficiently design 
and verify our algorithms for FPGA and ASIC in an automotive 
context, where device complexity keeps growing, design cycle 
time shrinks, and the market demands high quality and standard 
compliance. It is necessary first to understand the common 
challenges the industry is facing to answer this question. 
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 A 2022 study by the Wilson Research Group (WRG) [5] 
indicates that more than two-thirds of all FPGA and ASIC 
projects are behind schedule. It also finds that more than half of 
the development effort on FPGA and ASIC projects is spent on 
verification activities, with debugging accounting for roughly a 
quarter of the project time. Despite these efforts, over 80% of all 
FPGA projects have non-trivial bug escapes into production, 
even in safety-critical applications. These bugs could be traced 
to logic and functional flaws in more than 50% of the cases. The 
study additionally finds that design errors are the leading cause 
of functional flaws, closely followed by problems related to 
changing incorrect and incomplete specifications. Table 1 
summarizes some of the key findings. Overall, these numbers 
haven’t changed significantly over the last decade. Development 
managers are using staff time to address the consequences of 
these issues instead of focusing on the next technical projects to 
help their companies grow and be more competitive. 

 We attribute these findings primarily to design and 
verification methodologies shortcomings based on translating 
textual requirements and behavioral specification models into 
RTL code and testbenches manually. They emerged over three 
decades ago and remain the predominant paradigm today, 
especially in safety-critical systems. In our further discussion, 
we will refer to this workflow as the traditional development 
process. 

 Next, we present an integrated workflow for digital hardware 
design and detail how it can address the challenges described 
above. 

II. MODEL BASED DESIGN FOR DIGITAL HARDWARE 

Model-Based Design (MBD) is a mathematical and visual 
approach to developing complex systems that systematically 
use models throughout the development process. These 
models represent multi-domain, cyber-physical systems, 
including the environment, system components (e.g., 
electrical, AMS, RF, and mechanical), and software and 
hardware algorithms; these models allow designers first to 
understand behavior and find optimal design choices using 
simulation long before actual implementation. Engineers can 
generate optimized C/C++ and HDL code from models in the 
context of embedded hardware and reuse model simulation 
testbenches for deployment and verification.  

Models serve as a common language throughout the 
development process and promote cross-functional team 
collaboration. Using models to refine product specifications 
reduces the dependency on prototype availability and is a key 
reason for faster product development and savings [6]. With 
MBD, an integrated toolchain is used from systems 
engineering throughout all project phases. It seamlessly 
connects algorithms to system architectures, hardware designs, 
and the verification process. MBD supports the core values of 
agile development [9]. 

A. System level specification 

System requirements are created by separate teams and 
captured textually in a traditional development process using 
tools such as Microsoft® Word® or IBM® Doors®. At the 
same time, system architectures are specified in drawing tools, 

making them difficult to analyze, interpret, and manage as 
changes are made.  

Validating these requirements can be difficult; an erroneous 
specification could result that would then be translated into 
design errors, as indicated in the WRG study. MBD begins with 
the same set of system requirements as a traditional process. 
However, it creates a system architecture with behavior and 
architecture models using MATLAB®, Simulink®, and System 
Composer™ instead of converting them into textual 
specification [7]. The textual requirements can be imported, 
managed, linked, and traced to the model’s components as 
recommended by ISO 26262. This step helps to identify 
unintended functionality and ensures requirements coverage, 
and an executable specification of the system results. Engineers 
can simulate these architecture models to elucidate 
requirements and specifications, execute tradeoff analysis, and 
uncover inconsistencies and integration issues before 
implementation [6]. Known as Model Based System 
Engineering (MBSE), this approach can produce up to 55% 
overall savings after two years [8]. Using executable models 
reduces dependency on textual requirements and resolves 
ambiguities in product specification. MBSE is well in line with 
recommendations of ISO 26262 - Part 4, covering product 
development at the system level and allows to parallelize 
system and safety engineering [10].  

B. Detailed algorithm design for implementation 

Specifications are manually translated into HDL code in a 
traditional design process, which is time-consuming and error-
prone. Defects may be introduced, accumulated, and propagated 
downstream at each phase. As a result, debugging consumes 
roughly one-quarter of the overall development effort [5]. The 
heterogeneous tool environment, multiple manual steps, 
changing requirements, and late-stage defect detection 
contribute significantly to the ubiquitous project delays [6]. 

MBD can alleviate those issues on multiple levels, and the 
key is automatic RTL code generation. HDL Coder™ [11] can 
generate VHDL or Verilog code from MATLAB®, Simulink®, 
and Stateflow®. All can be combined within Simulink, and the 
designer can choose a suitable data and control path design 
methodology. Simulink® is a graphical environment for 
hardware design, with models reflecting hardware architecture 
and hardware concepts such as parallelism. Multi-rate systems 
and asynchronous clock design are supported for code 
generation. The generated code can match the model behavior 
on the bit (numerical) and cycle level (timing), facilitating 
debugging and verification. 

An extensive Simulink block library and MATLAB 
functions support automatic HDL code generation with proven 
efficiency [24][25][26] for different applications, including 
signal processing and communications, control design, and 
computer vision. Many blocks are configurable, offering micro-
hardware architecture implementation choices. Fixed Point 
Designer™ [12] helps analyze and convert floating point 
algorithms to reduced-precision floating points or fixed points. 
Math functions can be automatically converted into interpolated 
lookup tables. HDL code generation supports floating points in 
IEEE 754 half, single, and double precision. HDL Coder™ 
supports resource sharing and retiming optimizations.  
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Moreover, resource mapping can be controlled for DSP 
slices, BRAM, and lookup tables. These capabilities enable 
design space exploration and evaluation in area, throughput, 
latency, and power tradeoffs. The code is customizable, 
readable, and well-structured, retaining model hierarchy and 
signal naming, with different comments, such as data types. IP 
cores with standard AXI interfaces can also be generated. Thus, 
production-quality RTL code can be achieved from models at 
high levels of abstraction.  

Bidirectional traceability is supported as recommended by 
ISO 26262 because the HDL code is traceable to the model. RTL 
code is generated, and the model can be easily repurposed for 
different FPGA target devices or transitioned to ASICs since 
target-independent RTL code is generated. Manually written 
HDL code can be integrated using cosimulation with HDL 
simulators if required for system-level stimulation [13]. 

TÜV SÜD certifies HDL Coder™ as suitable for ASIL A-D 
and can be classified as tool confidence level 1 (TCL1), meaning 
that no additional qualification measures are required provided 
that a verification and validation (V&V) workflow (described 
below) is followed. The IEC Certification Kit [14] provides tool-
qualification artifacts, certificates, and tool-validation test suites 
to streamline certification. This qualification lowers the 
certification burden and supports toolchain upgrades. 

MBD supports hardware-software codesign for SoC 
platforms [15]. Algorithm models can be partitioned between 
implementation in programmable logic and processor cores. 
Production quality C/C++ code can be generated for the CPU 
using Embedded Coder®, enabling communication with IP 
cores via AXI4, AXI4-Lite, or AXI4-Stream interfaces. 
Embedded Coder is similarly qualified for ASIL A-D as TCL1, 
and the same model V&V tools can be leveraged, which we 
describe in the next section. 

SoC Blockset™ [16] allows simulating internal AXI 
interfaces, DDR memory transactions, and multi-core task 
scheduling to further help with SoC designs. The user can design 
the data path and quickly explore hardware and software 
partitioning performance. The whole application can be 
deployed automatically for prototyping, and the simulated 
performance can be validated using on-device profiling. 

 Lastly, we assert that model-level debugging is more 
efficient than debugging RTL implementations. Model changes 
can be introduced rapidly. Simulink® library blocks are pre-
tested, and models are transparent regarding data types and sizes 
and sampling times. Engineers can harness the data 
visualization, logging, and analysis tools available through 
MATLAB® and Simulink®, which go well beyond a logic 
analyzer offered by HDL simulators. One can simplify the 
analysis of large, complex models using model slicing [17] by 
focusing on interest areas based on functional dependencies 
determined via simulation or formal methods. This feature is 
also useful for interference analysis freedom in the system 
specification step, according to ISO 26262. 

C. Continuous verification and validation 

The main idea behind FPGA, SoC, and ASIC verification 
in MBD is first to verify model’s behavior against its test 
requirements using static and dynamic methods. In the second 

stage, we automatically prove the behavioral equivalence 
between the model and the generated HDL code and its 
implementation on bits and cycle levels. The bulk of the 
verification effort is shifted towards the model level, where it 
is more directly linked to requirements, realizing the 
semiconductor industry’s “shift-left” trend.  

The first stage in this process deals with model-based 
verification and validation (model V&V), intending to 
demonstrate that the model used for production code 
generation behaves as specified by the requirements and that 
all requirements are implemented. Model V&V applies the 
same set of techniques on models that are mainstream for 
HDL code verification [5], namely formal methods and 
simulation-based techniques. Formal methods provided by 
Simulink® Design Verifier™ statically identify hidden design 
errors in models such as division by zero, overflows, and dead 
logic without using simulation. Formal property checking is 
also supported: one can describe safety requirements in a 
mathematical form, and the tool can prove or disprove 
compliance and generate counterexamples in case of the latter.  

Simulink provides simulation-based verification through 
multi-domain, high-fidelity models of analog, mixed-signal, 
RF, and mechatronic components support. These models may 
be used to construct testbenches for algorithms designed for 
implementation in hardware and software. Model coverage is 
measured by several methods —execution, condition, 
decision, modified condition/decision (MCDC) — and can be 
highlighted in block diagrams and state machine models. This 
approach ensures test completeness and unintended 
functionality absence. An array of test tools is provided for 
creating test sequences and assessments for different use cases 
[18]. Constrained-random verification (CRV) can be applied 
to verify models before code verification [19]. Various static 
and dynamic assertion blocks also support assertion-based 
verification (AVB). Test harnesses can be automatically 
created to isolate components and apply a range of test 
scenarios. Test cases and their assessment must be linked with 
test requirements for measuring functional test coverage and 
essentially perform requirement-based testing. The V&V 
process can be centralized using the Test Manager [20], which 
can be coupled with continuous integration (CI) tools such as 
Jenkins [21]. While integrating components from different 
development branches, differences between related models 
can be displayed visually, and merging is possible. 
Testbenches and test harnesses are added successively for 
continuous verification and integration testing as designs 
progress through the development cycle. V&V tool usage can 
be qualified for ISO 26262 with a tool confidence level 2 
(TCL2), and the IEC Certification Kit provides automated test 
suits for ease of tool qualification. 

HDL code verification is the second stage. The goal is to 
demonstrate the equivalence of a Simulink specification model 
and the generated RTL through simulation result comparison. 
This step reuses the model testbenches automatically. It 
ultimately ensures that the code is acting according to the 
specification. This step reuses model testbenches in several 
automated actions. The first is HDL cosimulation with logic 
simulators such as Siemens® QuestaSim™ / ModelSim™, 
Cadence® Xcelium®, or Xilinx® Vivado® [13]. An 



automatically generated cosimulation testbench applies input 
signals to the specification model and HDL code and 
compares their outputs. Second, VHDL, Verilog, and 
SystemVerilog DPI behavioral testbenches can be generated 
by comparing the equality and assessing the path/fail behavior 
with assertions. This method suits design teams running unit 
tests using logic simulators on server farms. Model-level 
assertions can also be converted into SystemVerilog 
assertions. Third, design teams can generate Universal 
Verification Methodology (UVM) environments or individual 
verification components from Simulink models [22]. FPGA-
in-the-loop, a hardware-based method, may also verify the 
equivalence between the model and the FPGA implementation 
in an approach similar to HDL cosimulation. Code verification 
workflows can be added to the Test Manager for regression 
testing. Manually written HDL code can be integrated and 
verified with cosimulation and FPGA-in-the-loop or by 
leveraging the testbench export capabilities we just described.  

Overall hardware integration testing is usually done using 
the hardware in the loop. By using Speedgoat™ target 
computers [23] — the same test harnesses and model tests 
created for simulation — can be reused to test the integrated 
system in real time. Plant models can be automatically 
deployed along with test cases for real-time simulation on the 
Speedgoat computer’s CPU or optional FPGA boards. During 
the test execution, hardware board or ECU responses will be 
collected and sent back to the Test Manager for validation.  

III. CONCLUSION

We presented the current trends in the automotive industry 

and the industry’s challenges involving the design of FPGAs, 

programmable SoCs, and ASICs algorithm implementation. 

We noted the issues with conventional design flows and 

described how a model-based design approach could 

significantly improve product quality, shorten development 

time, reduce product costs, and enable more rapid responses in 

requirements or implementation target changes. The ISO 

26262-qualified, integrated toolchain promotes multi-domain 

collaboration and ultimately helps streamline embedded 

hardware algorithm design and certification. 
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