Sim.l.am: A Robot Simulator

Jean-Pierre de la Croix

Last Updated: March 28, 2014

Contents
[1__Introductionl 2
L1 _Installationl 2
1.2 Requirements| e 2
1.3 Bug Reporting] 2
3
2.1 QuickBot| e 3
2.1.1 IR Range Sensors|. e e e 3
EI2 Differential WHeel DITVE] . . .« « « o oo v v e e e e e e 4
2.1.3 Wheel Encoders] 5
2.2 Khepera Il o o 0 o)
[B_Simulator] 8
4 Programming Assignments| 9
BT Week 1. . . . o o e e 9
E27Week 2. . . . o o 10
B3 Week 3. . . o o 13
A Week 4., 17
4.5 Week Bl. . . . e 20
B Week 6. o oo e 25
R /7 Sk 28

1 Introduction

This manual is going to be your resource for using the simulator with the programming assignments
originally featured in the Coursera course, Control of Mobile Robots (and included at the end of this
manual). It will be updated from time to time whenever new features are added to the simulator.

1.1 Installation

Download simiam-coursera-week-X.zip (where X is the corresponding week number for the assignment)
from GitHub project page under |Releases. Make sure to download a new copy of the simulator before
you start a new week’s programming assignment. It is important to stay up-to-date, since new versions
may contain important bug fixes or features required for the programming assignments.

Unzip the .zip file to any directory.

1.2 Requirements

You will need a reasonably modern computer to run the robot simulator. While the simulator will run
on hardware older than a Pentium 4, it will probably be a very slow experience. You will also need a
copy of MATLAB.

1.3 Bug Reporting

If you run into a bug (issue) with the simulator, please create a new issue in the |Browse Issues| section
on the GitHub project page. Make sure to leave a detailed description of the bug.

https://github.com/jdelacroix/simiam/releases
https://github.com/jdelacroix/simiam/issues?state=open

YR T Y
(a) Simulated QuickBot (b) Actual QuickBot

Figure 1: The QuickBot mobile robot in and outside of the simulator.

2 Mobile Robot

The simulator currently supports two different mobile robot platforms: the QuickBot and the Khepera
III. The QuickBot is featured in the programming exercises; however, the programming assignments can
also be completed with the Khepera III.

2.1 QuickBot

The mobile robot you will be working with in the programming exercises is the QuickBot. The QuickBot
is equipped with five infrared (IR) range sensors, of which three are located in the front and two are
located on its sides. The QuickBot has a two-wheel differential drive system (two wheels, two motors)
with a wheel encoder for each wheel. It is powered by two 4x AA battery packs on top and can be
controlled via software on its embedded Linux computer, the BeagleBone Black. You can build the
QuickBot yourself by following the hardware lectures in this course.

Figure [2| shows the simulated and actual QuickBot mobile robot. The robot simulator recreates the
QuickBot as faithfully as possible. For example, the range, output, and field of view of the simulated
IR range sensors match the specifications in the datasheet for the actual Sharp GP2D120XJ00F infrared
proximity sensors on the QuickBot.

2.1.1 IR Range Sensors

You will have access to the array of five IR sensors that encompass the QuickBot. The orientation (relative
to the body of the QuickBot, as shown in ﬁgure of IR sensors 1 through 5 is 90°,45°,0°, —45°, —90°,
respectively.l R range sensors are effective in the range 0.04 m to 0.3 m only. However, the IR sensors
return raw values in the range of [0.4,2.75]V instead of the measured distances. Figure [2a] demonstrates
the function that maps these sensors values to distances. To complicate matters slightly, the BeagleBone
Black digitizes the analog output voltage using a voltage divider and a 12-bit, 1.8V analog-to-digital
converter (ADC). Figure is a look-up table to demonstrate the relationship between the ADC output,
the analog voltage from the IR proximity sensor, and the approximate distance that corresponds to this
voltage.

Any controller can access the IR array through the robot object that is passed into its execute
function. For example,

ir_distances = robot.get_ir_distances();
for i=1:numel(robot.ir_array)
fprintf (IR #Jd has a value of Jd’, i, robot.ir_array(i).get_range());

http://o-botics.org/robots/quickbot/mooc/v1/
http://www.k-team.com/mobile-robotics-products/khepera-iii
http://www.k-team.com/mobile-robotics-products/khepera-iii

Distance (m) | Voltage (V) ADC Out
usl 0.04 2.750 917
0.05 2.350 783
0.06 2.050 683
2k : 1 0.07 1.750 583
0.08 1.550 517
%157 0.09 1.400 467
‘;’5 0.10 1.275 425
0.12 1.075 358
1k 1 0.14 0.925 308
0.16 0.805 268
ol 0.18 0.725 242
0.20 0.650 217
0.25 0.500 167
% 0.65 o‘.1 0.‘;5‘ (0;2 0.‘25 o‘.3 0.35 0.30 0.400 133
(a) Analog voltage output when an object is be- (b) A look-up table for interpolating a distance (m)
tween 0.04m and 0.3m in the IR proximity sensor’s from the analog (and digital) output voltages.

field of view.

Figure 2: A graph and a table illustrating the relationship between the distance of an object within the
field of view of an infrared proximity sensor and the analog (and digital) ouptut voltage of the sensor.

fprintf (Cor %0.3f meters.\n’, ir_distances(i));
end

It is assumed that the function get_ir_distances properly converts from the ADC output to an
analog output voltage, and then from the analog output voltage to a distance in meters. The conversion
from ADC output to analog output voltage is simply,

1 * Vanalo
Vapc = {000 £ lg-‘

3

NOTE: For Week 2, the simulator uses a different voltage divider on the ADC; therefore,
Vabpc = Vanalog * 1000/2. This has been fixed in subsequent weeks!

Converting from the the analog output voltage to a distance is a little bit more complicated, because
a) the relationships between analog output voltage and distance is not linear, and b) the look-up table
provides a coarse sample of points on the curve in Figure MATLAB has a polyfit function to fit
a curve to the values in the look-up table, and a polyval function to interpolate a point on that fitted
curve. The combination of the these two functions can be use to approximate a distance based on the
analog output voltage. For more information, see Section [4.2

It is important to note that the IR proximity sensor on the actual QuickBot will be influenced
by ambient lighting and other sources of interference. For example, under different ambient lighting
conditions, the same analog output voltage may correspond to different distances of an object from the
IR proximity sensor. This effect of ambient lighting (and other sources of noise) is not modelled in the
simulator, but will be apparent on the actual hardware.

2.1.2 Differential Wheel Drive

Since the QuickBot has a differential wheel drive (i.e., is not a unicyle), it has to be controlled by specifying
the angular velocities of the right and left wheel (v,.,v;), instead of the linear and angular velocities of
a unicycle (v,w). These velocities are computed by a transformation from (v,w) to (v, ve). Recall that

the dynamics of the unicycle are defined as,

& = vcos(h)
U = vsin(6) (1)

0 =w.

The dynamics of the differential drive are defined as,

&= E(UT + ve)cos(0)

2
§= 4 (0r + v)sin(6) 2
6= %(w — vy),

where R is the radius of the wheels and L is the distance between the wheels.
The speed of the QuickBot can be set in the following way assuming that the uni_to_diff function
has been implemented, which transforms (v,w) to (v, ve):

v = 0.15; % m/s

w = pi/4; % rad/s

% Transform from v,w to v_r,v_1l and set the speed of the robot
[vel_r, vel_1] = obj.robot.dynamics.uni_to_diff (robot,v,w);
obj.robot.set_speeds(vel_r, vel_1);

The maximum angular wheel velocity for the QuickBot is approximately 80 RPM or 8.37 rad/s.
It is important to note that if the QuickBot is controlled ot move at maximum linear velocity, it is
not possible to achieve any angular velocity, because the angular velocity of the wheel will have been
maximized. Therefore, there exists a tradeoff between the linear and angular velocity of the QuickBot:
the faster the robot should turn, the slower it has to move forward.

2.1.3 Wheel Encoders

Each of the wheels is outfitted with a wheel encoder that increments or decrements a tick counter
depending on whether the wheel is moving forward or backwards, respectively. Wheel encoders may be
used to infer the relative pose of the robot. This inference is called odometry. The relevant information
needed for odometry is the radius of the wheel (32.5mm), the distance between the wheels (99.25mm),
and the number of ticks per revolution of the wheel (16 ticks/rev). For example,

R robot.wheel_radius; % radius of the wheel
L robot.wheel_base_length; % distance between the wheels
tpr = robot.encoders(l).ticks_per_rev; % ticks per revolution for the right wheel

fprintf (’The right wheel has a tick count of %d\n’, robot.encoders(l).state);
fprintf (’The left wheel has a tick count of %d\n’, robot.encoders(2).state);

For more information about odometry, see Section

2.2 Khepera III

The mobile robot platform you will be using in the homeworks and projects is the Khepera III (K3)
mobile robot. The K3 is equipped with 11 infrared (IR) range sensors, of which nine are located in a ring
around it and two are located on the underside of the robot. The IR sensors are complemented by a set
of five ultrasonic sensors. The K3 has a two-wheel differential drive with a wheel encoder for each wheel.
It is powered by a single battery on the underside and can be controlled via software on its embedded
Linux computer.

Sensor 5
Sensor 6
—— Simulated

3500

3000

2500(

20001

Sensor value

1500 \:
1000

500

. 0 0‘02 0‘04 0‘06 0‘08 0.1 0.12 0.14 0.16 0.18 0.2
(a) IR range sensor configuration Oisance [m]

(b) Sensor values vs. Measured Distance

Figure 3: The Khepera IIT mobile robot and its IR sensors in the simulator.

IR Range Sensors

For the purpose of the homeworks and projects in the class, you will have access to the array of nine
IR sensors that encompass the K3. IR range sensors are effective in the range 0.02 m to 0.2 m only.
However, the IR sensors return raw values in the range of [18,3960] instead of the measured distances.
Figure [3b] demonstrates the function that maps these sensors values to distances.

The green plot represents the sensor model used in the simulator, while the blue and red plots show
the sensor response of two different IR sensors (under different ambient lighting levels). The effect of
ambient lighting (and other sources of noise) are not modelled in the simulator, but will be apparent on
the actual hardware.

The function that maps distances, denoted by A, to sensor values is the following piecewise function:

3)

F(A) = 3960, if Om < A <0.02m
] [3960e30(A=0:02) | if (0.02m < A < 0.2m

Your controller can access the IR array through the robot object that is passed into the execute
function. For example,

for i=1:9
fprintf (IR #)d has a value of %d.\n’, i, robot.ir_array(i).get_range());
end

The orientation (relative to the body of the K3, as shown in figure of IR sensors 1 through 9 is
128°,75°,42°, 13°, —13°, —42°, —75°, —128°, and 180°, respectively.
Ultrasonic Range Sensors

The ultrasonice range sensors have a sensing range of 0.2m to 4m, but are not available in the simulator.

Differential Wheel Drive

Since the K3 has a differential wheel drive (i.e., is not a unicyle), it has to be controlled by specifying
the rotational velocities of the right and left wheel. These velocities are computed by a transformation

from (v,w) to (v, v). Recall that the dynamics of the unicycle are defined as,

= vcos(0)
y = vsin(0) (4)

0 =w.

The dynamics of the differential drive are defined as,

T = E(U,- + ve)cos(6)

2
Y= g(vr + ve)sin(0) (5)
0= %(UT — vp),

where R is the radius of the wheels and L is the distance between the wheels.
The speed of the K3 can be set in the following way assuming that you have implemented the
uni_to_diff function, which transforms (v,w) to (v,,ve):

v =0.15; % m/s

w = pi/4; % rad/s

% Transform from v,w to v_r,v_1l and set the speed of the robot
[vel_r, vel_1] = obj.robot.dynamics.uni_to_diff (robot,v,w);

Wheel Encoders

Each of the wheels is outfitted with a wheel encoder that increments or decrements a tick counter
depending on whether the wheel is moving forward or backwards, respectively. Wheel encoders may be
used to infer the relative pose of the robot. This inference is called odometry. The relevant information
needed for odometry is the radius of the wheel, the distance between the wheels, and the number of ticks
per revolution of the wheel.

R = robot.wheel_radius; % radius of the wheel
L = robot.wheel_base_length; % distance between the wheels
tpr = robot.encoders(l).ticks_per_rev; % ticks per revolution for the right wheel

fprintf (’The right wheel has a tick count of %d\n’, robot.encoders(l).state);
fprintf (’The left wheel has a tick count of %d\n’, robot.encoders(2).state);

3 Simulator

Start the simulator with the launch command in MATLAB from the command window. It is important
that this command is executed inside the unzipped folder (but not inside any of its subdirectories).

Sim.Lam .

@ ooss

| S | =] +]
Figure 4: Simulator

Figure El is a screenshot of the graphical user interface (GUI) of the simulator. The GUI can be
controlled by the bottom row of buttons. The first button is the Home button and returns you to the
home screen. The second button is the Rewind button and resets the simulation. The third button is the
Play button, which can be used to play and pause the simulation. The set of Zoom buttons or the mouse
scroll wheel allows you to zoom in and out to get a better view of the simulation. Clicking, holding, and
moving the mouse allows you to pan around the environment. You can click on a robot to follow it as it
moves through the environment.

4 Programming Assignments

The following sections serve as a tutorial for getting through the simulator portions of the programming
exercises. Places where you need to either edit or add code is marked off by a set of comments. For
example,

%% START CODE BLOCK %%
[edit or add code here]
%% END CODE BLOCK %%

To start the simulator with the launch command from the command window, it is important that
this command is executed inside the unzipped folder (but not inside any of its subdirectories).

4.1 Week 1

This week’s exercises will help you learn about MATLAB and robot simulator:

1. Since the assignments in this course involve programming in MATLAB, you should familiarize
yourself with MATLAB (both the environment and the language).

2. Familiarize yourself with the simulator by reading this manual and downloading the robot simulator
posted here: simiam-coursera-week-1.zip.

https://github.com/jdelacroix/simiam/archive/simiam-coursera-week-1.zip

4.2 Week 2

Start by downloading the robot simulator for this week from simiam-coursera-week-2.zip. Before you
can design and test controllers in the simulator, you will need to implement three components of the
simulator:

1. Implement the transformation from unicycle dynamics to differential drive dynamics, i.e. convert
from (v,w) to the right and left angular wheel speeds (v,,v;).

In the simulator, (v,w) corresponds to the variables v and w, while (v,,v;) correspond to the
variables vel_r and vel_1. The function used by the controllers to convert from unicycle dynamics
to differential drive dynamics is located in +simiam/+robot/+dynamics/DifferentialDrive.m.
The function is named uni_to_diff, and inside of this function you will need to define vel r (v,.)
and vel 1 (v;) in terms of v, w, R, and L. R is the radius of a wheel, and L is the distance separating
the two wheels. Make sure to refer to Section [2.1.2)on “Differential Wheel Drive” for the dynamics.

2. Implement odometry for the robot, such that as the robot moves around, its pose (z,y,) is esti-
mated based on how far each of the wheels have turned. Assume that the robot starts at (0,0,0).

The tutorial located at |www.orcboard.org/wiki/images/1/1c/0dometryTutorial.pdf|covers how
odometry is computed. The general idea behind odometry is to use wheel encoders to measure the
distance the wheels have turned over a small period of time, and use this information to approximate
the change in pose of the robot.

The pose of the robot is composed of its position (x,y) and its orientation 6 on a 2 dimensional
plane (note: the video lecture may refer to robot’s orientation as ¢). The currently estimated
pose is stored in the variable state_estimate, which bundles x (z), y (y), and theta (). The
robot updates the estimate of its pose by calling the update_odometry function, which is located
in +simiam/+controller/+quickbot/QBSupervisor.m. This function is called every dt seconds,
where dt is 0.033s (or a little more if the simulation is running slower).

% Get wheel encoder ticks from the robot
right_ticks = obj.robot.encoders(1l).ticks;
left_ticks = obj.robot.encoders(2).ticks;

% Recall the wheel encoder ticks from the last estimate
prev_right_ticks = obj.prev_ticks.right;
prev_left_ticks = obj.prev_ticks.left;

% Previous estimate
[x, y, thetal = obj.state_estimate.unpack();

% Compute odometry here

R = obj.robot.wheel_radius;

L = obj.robot.wheel_base_length;

m_per_tick = (2*pi*R)/obj.robot.encoders(l).ticks_per_rev;

The above code is already provided so that you have all of the information needed to estimate the
change in pose of the robot. right_ticks and left_ticks are the accumulated wheel encoder ticks
of the right and left wheel. prev_right_ticks and prev_left_ticks are the wheel encoder ticks
of the right and left wheel saved during the last call to update_odometry. R is the radius of each
wheel, and L is the distance separating the two wheels. m_per_tick is a constant that tells you
how many meters a wheel covers with each tick of the wheel encoder. So, if you were to multiply
m_per_tick by (right_ticks-prev_right_ticks), you would get the distance travelled by the right
wheel since the last estimate.

Once you have computed the change in (z,y,0) (let us denote the changes as x_dt, y-dt, and
theta_dt) , you need to update the estimate of the pose:

10

https://github.com/jdelacroix/simiam/archive/simiam-coursera-week-2.zip
www.orcboard.org/wiki/images/1/1c/OdometryTutorial.pdf

theta_new theta + theta_d;
X_new = x + x_dt;
y_new =y + y_dt;

3. Read the ”IR Range Sensors” section in the manual and take note of the table in Figure which
maps distances (in meters) to raw IR values. Implement code that converts raw IR values to
distances (in meters).

To retrieve the distances (in meters) measured by the IR proximity sensor, you will need to imple-
ment a conversion from the raw IR values to distances in the get_ir_distances function located
in +simiam/+robot/Quickbot.m.

function ir_distances = get_ir_distances(obj)
ir_array_values = obj.ir_array.get_range();
ir_voltages = ir_array_values;
coeff = [];
ir_distances = polyval(coeff, ir_voltages);
end

The variable ir_array_values is an array of the IR raw values. Divide this array by 500 to compute
the ir_voltages array. The coeff should be the coefficients returned by

coeff = polyfit(ir_voltages_from_table, ir_distances_from_table, 5);

where the first input argument is an array of IR voltages from the table in Figure [2bland the second
argument is an array of the corresponding distances from the table in Figure[2D] The third argument
specifies that we will use a fifth-order polynomial to fit to the data. Instead of running this fit every
time, execute the polyfit once in the MATLAB command line, and enter them manually on the
third line, i.e. coeff = [... 1;. If the coefficients are properly computed, then the last line
will use polyval to convert from IR voltages to distances using a fifth-order polynomial using the
coefficients in coeff.

How to test it all

To test your code, the simulator will is set to run a single P-regulator that will steer the robot to a partic-
ular angle (denoted 64 or, in code, theta_d). This P-regulator is implemented in +simiam/+controller/
GoToAngle.m. If you want to change the linear velocity of the robot, or the angle to which it steers, edit
the following two lines in +simiam/+controller/+quickbot/QBSupervisor.m

obj.theta_d = pi/4;
obj.v = 0.1; %m/s

1. To test the transformation from unicycle to differential drive, first set obj.theta_d=0. The robot
should drive straight forward. Now, set obj.theta d to positive or negative 7. If positive, the robot
should start off by turning to its left, if negative it should start off by turning to its right. Note:
If you haven’t implemented odometry yet, the robot will just keep on turning in that direction.

2. To test the odometry, first make sure that the transformation from unicycle to differential drive

works correctly. If so, set obj.theta d to some value, for example 7, and the robot’s P-regulator
should steer the robot to that angle. You may also want to uncomment the fprintf statement in
the update_odometry function to print out the current estimate position to see if it make sense.

Remember, the robot starts at (z,y,6) = (0,0, 0).

3. To test the IR raw to distances conversion, edit +simiam/+controller/GoToAngle.m and uncom-
ment the following section:

11

% for i=1:numel(ir_distances)
% fprintf (’IR %d: %0.3fm\n’, i, ir_distances(i));
% end

This for loop will print out the IR distances. If there are no obstacles (for example, walls) around
the robot, these values should be close (if not equal to) 0.3m. Once the robot gets within range of
a wall, these values should decrease for some of the IR sensors (depending on which ones can sense
the obstacle). Note: The robot will eventually collide with the wall, because we have not designed
an obstacle avoidance controller yet!

12

4.3 Week 3

Start by downloading the new robot simulator for this week from |simiam-coursera-week-3.zip. This week
you will be implementing the different parts of a PID regulator that steers the robot successfully to some
goal location. This is known as the go-to-goal behavior:

1. Calculate the heading (angle), 8, to the goal location (z4,y4). Let u be the vector from the robot
located at (x,y) to the goal located at (z4,y,), then 0, is the angle v makes with the z-axis (positive
6, is in the counterclockwise direction).

All parts of the PID regulator will be implemented in the file +simiam/+controller/GoToGoal .m.
Take note that each of the three parts is commented to help you figure out where to code each part.
The vector u can be expressed in terms of its z-component, u, and its y-component, u,. u, should
be assigned to u_x and u, to u_y in the code. Use these two components and the atan2 function to
compute the angle to the goal, 6, (theta_g in the code).

2. Calculate the error between ¢, and the current heading of the robot, 6.

The error e k should represent the error between the heading to the goal theta_g and the current
heading of the robot theta. Make sure to use atan2 and/or other functions to keep the error
between [—,].

3. Calculate the proportional, integral, and derivative terms for the PID regulator that steers the
robot to the goal.

As before, the robot will drive at a constant linear velocity v, but it is up to the PID regulator to
steer the robot to the goal, i.e compute the correct angular velocity w. The PID regulator needs
three parts implemented:

(i) The first part is the proportional term e_P. It is simply the current error e k. e_P is multiplied
by the proportional gain obj.Kp when computing w.

(ii) The second part is the integral term e_I. The integral needs to be approximated in discrete
time using the total accumulated error obj.E k, the current error e_k, and the time step dt.
e_I is multiplied by the integral gain obj.Ki when computing w, and is also saved as obj.E_k
for the next time step.

(iii) The third part is the derivative term e_D. The derivative needs to be approximated in discrete
time using the current error e_k, the previous error obj.e_k_1, and the the time step dt. e D
is multiplied by the derivative gain obj.Kd when computing w, and the current error e _k is
saved as the previous error obj.e_k_1 for the next time step.

Now, you need to tune your PID gains to get a fast settle time (6 matches 6, within 10% in three
seconds or less) and there should be little overshoot (maximum 6 should not increase beyond 10%
of the reference value §,). What you don’t want to see are the following two graphs when the robot
tries to reach goal location (z4,y4) = (0, —1):

Figure [5b] demonstrates undershoot, which could be fixed by increasing the proportional gain or
adding some integral gain for better tracking. Picking better gains leads to the graph in Figure [6]

4. Ensure that the robot steers with an angular velocity w, even if the combination of v and w exceeds
the maximum angular velocity of the robot’s motors.

This week we’ll tackle the first of two limitations of the motors on the QuickBot. The first limitation
is that the robot’s motors have a maximum angular velocity, and the second limitation is that the
motors stall at low speeds. We will discuss the latter limitation in a later week and focus our
attention on the first limitation. Suppose that we pick a linear velocity v that requires the motors
to spin at 90% power. Then, we want to change w from 0 to some value that requires 20% more
power from the right motor, and 20% less power from the left motor. This is not an issue for the

13

https://github.com/jdelacroix/simiam/archive/simiam-coursera-week-3.zip

Eile Edt View Insert Tools Desktop Window Help o

LMD E A

File Edit View Insert Tools Desktop Window Help N

208 e

AN = N

B|0E| =D N HS L ARTDEL-

o i

nzb
04t _osk
-06

-0.8

2 L L L L L L I 25 L L L L L I I I
1}

(a) Overshoot (b) Undershoot (slow settle time)

Figure 5: PID gains were picked poorly, which lead to overshoot and poor settling times.

left motor, but the right motor cannot turn at a capacity greater than 100%. The results is that
the robot cannot turn with the w specified by our controller.

Since our PID controllers focus more on steering than on controlling the linear velocity, we want to
prioritize w over v in situations, where we cannot satisfy w with the motors. In fact, we will simply
reduce v until we have sufficient headroom to achieve w with the robot. The function ensure_w in
+simiam/+controller/+quickbot/QBSupervisor.m is designed ensure that w is achieved even if
the original combination of v and w exceeds the maximum v, and v;.

Complete ensure_w. Suppose v, 4 and v 4 are the angular wheel velocities needed to achieve w.
Then vel_rl max is max(v, q,v;,4) and vel_rl min is min(v, 4, v;,4). A motor’s maximum forward
angular velocity is obj.robot.max_vel (or velmax). So, for example, the equation that represents
the if/else statement for the right motors is:

Up,d — (max(vy 4, v1,q) — velmax) if max(vyq,vy,d) > velmax
Up = 4§ Up g — (Min(vy g, v,4) + Velmax) if min(vy g, v;,4) < —velmax

Vr d, otherwise,

which defines the appropriate v, (or vel r) needed to achieve w. This equation also applies to
computing a new v;. The results of ensures w is that if v and w are so large that v, and/or v
exceed velyax, then v is scaled back to ensure w is achieved (Note: w is precapped at the beginnging
of ensure_w to the maximum w possible if the robot is stationary).

How to test it all

To test your code, the simulator is set up to use the PID regulator in GoToGoal.m to drive the robot to
a goal location and stop. If you want to change the linear velocity of the robot, the goal location, or the
distance from the goal the robot will stop, then edit the following three lines in +simiam/+controller/
+quickbot/QBSupervisor.m.

obj.goal = [-1,1];
obj.v = 0.2;
obj.d_stop = 0.05;

Make sure the goal is located inside the walls, i.e. the x and y coordinates of the goal should be in the
range [—1,1]. Otherwise the robot will crash into a wall on its way to the goal!

14

Eile Edit View |nsert Tools Desktop Window Help k]

NEde | AL DEL- 2|08 | aD

1]

ozl

04t

-0.6

-0

Figure 6: Faster settle time and good tracking with little overshoot.

. To test the heading to the goal, set the goal location to obj.goal = [1,1]. theta_g should be
approximately 7 ~ 0.785 initially, and as the robot moves forward (since v = 0.1 and w = 0)
theta_g should increase. Check it using a fprintf statment or the plot that pops up. theta_g
corresponds to the red dashed line (i.e., it is the reference signal for the PID regulator).

. Test this part with the implementation of the third part.

. To test the third part, run the simulator and check if the robot drives to the goal location and
stops. In the plot, the blue solid line (theta) should match up with the red dashed line (theta_g).
You may also use fprintf statements to verify that the robot stops within obj.d_stop meters of
the goal location.

. To test the fourth part, set obj.v=10. Then add the following two lines of code after the call to
ensure_w in the execute function of QBSupervisor.m.

[v_limited, w_limited] = obj.robot.dynamics.diff_to_uni(vel_r, vel_l);
fprintf (’ (v,w) = (%0.3£,%0.3f), (v_limited,w_limited) = (%0.3f, %0.3f)\n’,
outputs.v, outputs.w, v_limited, w_limited);

If W # Wiimited, then w is not ensured by ensure_w. This function should scale back v, such that it
is possible for the robot to turn with the w output by the controller (unless |w| > 5.48 rad/s).

How to migrate your solutions from last week.

Here are a few pointers to help you migrate your own solutions from last week to this week’s simulator
code. You only need to pay attention to this section if you want to use your own solutions, otherwise you
can use what is provided for this week and skip this section.

1. You may overwrite +simiam/+robot/+dynamics/DifferentialDrive.m with your own version

from last week.

2. You should not overwrite +simiam/+robot/QuickBot.m with your own version from last week!

Many changes were made to this file for this week.

15

3. You should not overwrite +simiam/+controller/+quickbot/QBSupervisor.m! However, to use
your own solution to the odometry, you can replace the provided update_odometry function in
QBSupervisor.m with your own version from last week.

16

4.4

Week 4

Start by downloading the new robot simulator for this week from |simiam-coursera-week-4.zip. This week
you will be implementing the different parts of a controller that steers the robot successfully away from
obstacles to avoid a collision. This is known as the avoid-obstacles behavior. The IR sensors allow us to
measure the distance to obstacles in the environment, but we need to compute the points in the world
to which these distances correspond. Figure [7] illustrates these points with a black cross. The strategy

Figure 7: IR range to point transformation.

for obstacle avoidance that we will use is as follows:

4.
D.

Transform the IR distances to points in the world.
Compute a vector to each point from the robot, ui,us, ..., ug.

Weigh each vector according to their importance, ayuy, asus, ..., agug. For example, the front and
side sensors are typically more important for obstacle avoidance while moving forward.

Sum the weighted vectors to form a single vector, uqe, = 1u1 + ... + agug.

Use this vector to compute a heading and steer the robot to this angle.

This strategy will steer the robot in a direction with the most free space (i.e., it is a direction away
from obstacles). For this strategy to work, you will need to implement three crucial parts of the strategy
for the obstacle avoidance behavior:

1.

Transform the IR distance (which you converted from the raw IR values in Week 2) measured by
each sensor to a point in the reference frame of the robot.

A point p; that is measured to be d; meters away by sensor 7 can be written as the vector (co-
i
0
be in the reference frame of the robot. To do this transformation, we need to use the pose (lo-
cation and orientation) of the sensor in the reference frame of the robot: (z,,ys,,0s,) or in code,
(x_s,y-s,theta_s). The transformation is defined as:

ordinate) v; = in the reference frame of sensor i. We first need to transform this point to

U
/U7/; = R(xS“ySi)asi) |:1:| I

17

https://github.com/jdelacroix/simiam/archive/simiam-coursera-week-4.zip

where R is known as the transformation matrix that applies a translation by (z,y) and a rotation
by 6:
cos(f) —sin(d) =«
R(z,y,0) = |sin(d) cos(d) vy,
0 0 1

which you need to implement in the function obj.get_transformation matrix.

In +simiam/+controller/+AvoidObstacles.m, implement the transformation in the apply_sensor
_geometry function. The objective is to store the transformed points in ir_distances_rf, such that
this matrix has v} as its first column, v4 as its second column, and so on.

. Transform the point in the robot’s reference frame to the world’s reference frame.

A second transformation is needed to determine where a point p; is located in the world that is
measured by sensor i. We need to use the pose of the robot, (x,y,#), to transform the robot from
the robot’s reference frame to the world’s reference frame. This transformation is defined as:

v = R(x,y,0)v;
In +simiam/+controller/+AvoidObstacles.m, implement this transformation in the apply_sensor
_geometry function. The objective is to store the transformed points in ir_distances_wf, such that
this matrix has v} as its first column, v} as its second column, and so on. This matrix now contains
the coordinates of the points illustrated in Figure [7] by the black crosses. Note how these points
approzimately correspond to the distances measured by each sensor (Note: approxzimately, because
of how we converted from raw IR values to meters in Week 2).

. Use the set of transformed points to compute a vector that points away from the obstacle. The
robot will steer in the direction of this vector and successfully avoid the obstacle.

In the function execute implement parts 2.-4. of the obstacle avoidance strategy.

(i) Compute a vector u; to each point (corresponding to a particular sensor) from the robot. Use a
point’s coordinate from ir_distances_wf and the robot’s location (x,y) for this computation.

(ii) Pick a weight «; for each vector according to how important you think a particular sensor
is for obstacle avoidance. For example, if you were to multiply the vector from the robot to
point ¢ (corresponding to sensor i) by a small value (e.g., 0.1), then sensor ¢ will not impact
obstacle avoidance significantly. Set the weights in sensor_gains. Note: Make sure to that
the weights are symmetric with respect to the left and right sides of the robot. Without any
obstacles around, the robot should only steer slightly right (due to a small asymmetry in the
how the IR sensors are mounted on the robot).

(iii) Sum up the weighted vectors, a;u;, into a single vector .

(iv) Use uq0 and the pose of the robot to compute a heading that steers the robot away from
obstacles (i.e., in a direction with free space, because the vectors that correspond to directions
with large IR distances will contribute the most to ug,).

QuickBot Motor Limitations

Last week we implemented a function, ensure_w, which was responsible for respecting w from the con-
troller as best as possible by scaling v if necessary. This implementation assumed that it was possible to
control the angular velocity in the range [—velpax, velmax]. This range reflected the fact that the motors
on the QuickBot have a maximum rotational speed. However, it is also true that the motors have a min-
imum speed before the robot starts moving. If not enough power is applied to the motors, the angular
velocity of a wheel remains at 0. Once enough power is applied, the wheels spin at a speed velpyiy,.

The ensure_w function has been updated this week to take this limitation into account. For example,

small (v, w) may not be achievable on the QuickBot, so ensure_w scales up v to make w possible. Similarily,

18

if (v,w) are both large, ensure w scales down v to ensure w (as was the case last week). You can
uncomment the two fprintf statements to see (v,w) before and after.

There is nothing that needs to be added or implemented for this week in ensure_w, but you may find it
interesting how one deals with physical limitations on a mobile robot, like the QuickBot. This particular
approach has an interesting consequence, which is that if v > 0, then v, and v; are both positive (and
vice versa, if v < 0). Therefore, we often have to increase or decrease v significantly to ensure w even
if it were better to make small adjustments to both w and v. As with most of the components in these
programming assignments, there are alternative designs with their own advantages and disadvantages.
Feel free to share your designs with everyone on the discussion forums!

How to test it all

To test your code, the simulator is set up to use load the AvoidObstacles.m controller to drive the robot
around the environment without colliding with any of the walls. If you want to change the linear velocity
of the robot, then edit the following line in +simiam/+controller/+quickbot/QBSupervisor.m.

obj.v = 0.2;
Here are some tips on how to test the three parts:
1. Test the first part with the second part.

2. Once you have implemented the second part, one black cross should match up with each sensor
as shown in Figure The robot should drive forward and collide with the wall. The blue line
indicates the direction that the robot is currently heading (6).

3. Once you have implemented the third part, the robot should be able to successfully navigate the
world without colliding with the walls (obstacles). If no obstacles are in range of the sensors, the
red line (representing u,0) should just point forward (i.e., in the direction the robot is driving). In
the presence of obstacles, the red line should point away from the obstacles in the direction of free
space.

You can also tune the parameters of the PID regulator for w by editing obj.Kp, obj.Ki, and obj.Kd
in AvoidObstacles.m. The PID regulator should steer the robot in the direction of ug0, so you should
see that the blue line tracks the red line. Note: The red and blue lines (as well as, the black crosses)
will likely deviate from their positions on the robot. The reason is that they are drawn with information
derived from the odometry of the robot. The odometry of the robot accumulates error over time as the
robot drives around the world. This odometric drift can be seen when information based on odometry is
visualized via the lines and crosses.

How to migrate your solutions from last week

Here are a few pointers to help you migrate your own solutions from last week to this week’s simulator
code. You only need to pay attention to this section if you want to use your own solutions, otherwise you
can use what is provided for this week and skip this section.

1. You may overwrite the same files as listed for Week 3.
2. You may overwrite +simiam/+controller/GoToGoal.m with your own version from last week.

3. You should not overwrite +simiam/+controller/+quickbot/QBSupervisor.m! However, to use
your own solution to the odometry, you can replace the provided update_odometry function in
QBSupervisor.m with your own version from last week.

4. You may replace the PID regulator in +simiam/+controller/AvoidObstacles.m with your own
version from the previous week (i.e., use the PID code from GoToGoal.m).

19

4.5 Week 5

Start by downloading the new robot simulator for this week from |simiam-coursera-week-5.zipl This
week you will be adding small improvements to testing two arbitration mechanisms: blending and hard
switches. Arbitration between the two controllers will allow the robot to drive to a goal, while not
colliding with any obstacles on the way.

1. Implement a simple control for the linear velocity, v, as a function of the angular velocity, w. Add
it to both +simiam/+controller/GoToGoal.m and +simiam/+controller/AvoidObstacles.m.

So far, we have implemented controllers that either steer the robot towards a goal location, or
steer the robot away from an obstacle. In both cases, we have set the linear velocity, v, to a
constant value of 0.1 m/s or similar. While this approach works, it certainly leave plenty of room
for improvement. We will improve the performance of both the go-to-goal and avoid-obstacles
behavior by dynamically adjusting the linear velocity based on the angular velocity of the robot.

We previously learned that with a differential drive robot, we cannot, for example, drive the robot
at the maximum linear and angular velocities. Each motor has a maximum and minimum angular
velocity; therefore, there must be a trade-off between linear and angular velocities: linear velocity
has to decrease in some cases for angular velocity to increase, and vice versa.

We added the ensure_w function over the last two weeks, which ensured that w is achieved by scaling
v. However, for example, one could improve the above strategy by letting the linear velocity be a
function of the angular velocity and the distance to the goal (or distance to the nearest obstacle).

Improve your go-to-goal and avoid-obstacles controllers by adding a simple function that adjusts v
as function of w and other information. For example, the linear velocity in the go-to-goal controller
could be scaled by w and the distance to the goal, such that the robot slows down as it reaches the
goal. However, remember that ensure_w will scale v up if it is too low to support w. You can think
of your simple function as part of the controller design (what we would like the robot to do), while
ensure_w is part of the robot design (what the robot actually can do).

Note: This part of the programming assignment is open ended and not checked by the automatic
grader, but it will help with the other parts of this assignment.

2. Combine your go-to-goal controller and avoid-obstacle controller into a single controller that blends
the two behaviors. Implement it in +simiam/+controller/A0andGTG.m.

It’s time to implement the first type of arbitration mechanism between multiple controllers: blend-
ing. The solutions to the go-to-goal and avoid-obstacles controllers have been combined into a single
controller, +simiam/+controller/AO0andGTG.m. However, one important piece is missing. u_gtg is
a vector pointing to the goal from the robot, and u_ao is a vector pointing from the robot to a point
in space away from obstacles. These two vectors need to be combined (blended) in some way into
the vector u_ao_gtg, which should be a vector that points the robot both away from obstacles and
towards the goal.

The combination of the two vectors into u_ao_gtg should result in the robot driving to a goal
without colliding with any obstacles in the way. Do not use if/else to pick between u_gtg or
u_ao, but rather think about weighing each vector according to their importance, and then linearly
combining the two vectors into a single vector, u_ao_gtg. For example,

0.75

Ugo,gtg — OQUgtg + (1 - a)uao

«

In this example, the go-to-goal behavior is stronger than the avoid-obstacle behavior, but that may
not be the best strategy. « needs to be carefully tuned (or a different weighted linear combination
needs to be designed) to get the best balance between go-to-goal and avoid-obstacles. To make life
easier, consider using the normalized versions of ugts and u,, defined in the video lecture.

20

https://github.com/jdelacroix/simiam/archive/simiam-coursera-week-5.zip

3. Implement the switching logic that switches between the go-to-goal controller and the avoid-
obstacles controller, such that the robot avoids any nearby obstacles and drives to the goal when
clear of any obstacles.

The second type of arbitration mechanism is switching. Instead of executing both go-to-goal and
avoid-obstacles simultaneously, we will only execute one controller at a time, but switch between
the two controllers whenever a certain condition is satisfied.

In the execute function of +simiam/+controller/+quickbot/QBSupervisor.m, you will need to
implement the switching logic between go-to-goal and avoid-obstacles. The supervisor has been
extended since last week to support switching between different controllers (or states, where a state
simply corresponds to one of the controllers being executed). In order to switch between different
controllers (or states), the supervisor also defines a set of events. These events can be checked to
see if they are true or false. The idea is to start of in some state (which runs a certain controller),
check if a particular event has occured, and if so, switch to a new controller.

The tools that you should will need to implement the switching logic:

(i) Four events can be checked with the obj.check_event(name) function, where name is the
name of the state:

e ‘at_obstacle’ checks to see if any of front sensors (all but the three IR sensors in the
back of the robot) detect an obstacle at a distance less than obj.d_at_obs. Return true
if this is the case, false otherwise.

e ‘at_goal’ checks to see if the robot is within obj.d_stop meters of the goal location.

e ‘unsafe’ checks to see if any of the front sensors detect an obstacle at a distance less
than obj.d_unsafe.

e ‘obstacle_cleared’ checks to see if all of the front sensors report distances greater than
obj.d_at_obs meters.

(ii) The obj.switch_state(name) function switches between the states/controllers. There cur-
rently are four possible values that name can be:

e ‘go_to_goal’ for the go-to-goal controller.

e ‘avoid_obstacles’ for the avoid-obstacles controller.
e ‘ao_and_gtg’ for the blending controller.

e ‘stop’ for stopping the robot.

Implement the logic for switching to avoid_obstacles, when at_obstacle is true, switching to
go_to_goal when obstacle_cleared is true, and switching to stop when at_goal is true.

Note: Running the blending controller was implemented using these switching tools as an example.
In the example, check_event(’at_goal’) was used to switch from ao_and_gtg to stop once the
robot reaches the goal.

4. Improve the switching arbitration by using the blended controller as an intermediary between the
go-to-goal and avoid-obstacles controller.

The blending controller’s advantage is that it (hopefully) smoothly blends go-to-goal and avoid-
obstacles together. However, when there are no obstacle around, it is better to purely use go-to-goal,
and when the robot gets dangerously close, it is better to only use avoid-obstacles. The switching
logic performs better in those kinds of situations, but jitters between go-to-goal and avoid-obstacle
when close to a goal. A solution is to squeeze the blending controller in between the go-to-goal and
avoid-obstacle controller.

Implement the logic for switching to ao_and_gtg, when at_obstacle is true, switching to go_to_goal
when obstacle_cleared is true, switching to avoid_obstacles when unsafe is true, and switching
to stop when at_goal is true.

21

How to test it all

To test your code, the simulator is set up to either use the blending arbitration mechanism or the switching
arbitration mechanism. If obj.is_blending is true, then blending is used, otherwise switching is used.
Here are some tips to the test the four parts:

1. Test the first part with the second part. Uncomment the line:
fprintf (’ (v,w) = (%0.3f,%0.3f)\n’, outputs.v, outputs.w);

It is located with the code for the blending, which you will test in the next part. Watch (v,w) to
make sure your function works as intended.

2. Test the second part by setting obj.is_blending to true. The robot should successfully navigate
to the goal location (1,1) without colliding with the obstacle that is in the way. Once the robot is
near the goal, it should stop (you can adjust the stopping distance with obj.d_stop). The output
plot will likely look something similar to (depends on location of obstacles, and how the blending
is implemented):

Eile Edit Wiew Insert Tools Desktop Window Help E
DAL M ARODDEL- 2|08 | =D

35

AL .

25

0.5

3. Test the third part by setting obj.is_blending to false. The robot should successfully navigate
to the same goal location (1,1) without colliding with the obstacle that is in the way. Once the
robot is near the goal, it should stop. The output plot will likely look something similar to:

22

File Edit Wiew |Insert Tools Desktop Window Help L'

DEAdS| M AKRUDEL- 2|08 |aD

Notice that the blue line is the current heading of the robot, the red line is the heading set by the
go-to-goal controller, and the green line is the heading set by the avoid-obstacles controller. You
should see that the robot switches frequently between the two during its journey. Also, you will see
messages in the MATLAB window stating that a switch has occurred.

. Test the fourth part in the same way as the third part. This time, the output plot will likely look
something similar to:

File Edit Wiew Insert Tools Desktop Window Help Y

2| 0E| =D

NEAL AT DEL-

Notice that the controller still switches, but less often than before, because it now switches to the
blended controller (cyan line) instead. Depending on how you set obj.d_unsafe and obj.d_at_obs,

23

the number of switches and between which controllers the supervisor switches may change. Exper-
iment with different settings to observe their effect.

How to migrate your solutions from last week

Here are a few pointers to help you migrate your own solutions from last week to this week’s simulator
code. You only need to pay attention to this section if you want to use your own solutions, otherwise you
can use what is provided for this week and skip this section.

1. The simulator has seen a significant amount of changes from last week to support this week’s
programming exercises. It is recommended that you do not overwrite any of the files this week
with your solutions from last week.

2. However, you can selectively replace the sections delimited last week (by START/END CODE BLOCK)
in GoToGoal.m and AvoidObstacles.m, as well as the sections that were copied from each into
A0andGTG.m.

24

4.6 Week 6

Start by downloading the new robot simulator for this week from |simiam-coursera-week-6.zip. This week
you will be implementing a wall following behavior that will aid the robot in navigating around obstacles.
Implement these parts in +simiam/+controller/+FollowWall.m.

1. Compute a vector, us, ¢, that estimates a section of the obstacle (“wall”) next to the robot using
the robot’s right (or left) IR sensors.

We will use the IR sensors to detect an obstacle and construct a vector that approximates a section
of the obstacle (“wall”). In the figure, this vector, us, (u_fw_t), is illustrated in red.

The direction of the wall following behavior (whether it is follow obstacle on the left or right) is
determined by inputs.direction, which can either be equal to right or left. Suppose we want
to follow an obstacle to the left of the robot, then we would could use the left set of IR sensors
(1-3). If we are following the wall, then at all times there should be at least one sensor that can
detect the obstacle. So, we need to pick a second sensor and use the points corresponding to the
measurements from these two sensors (see avoid-obstacles in Week 4) to form a line that estimates
a section of the obstacle. In the figure above, sensors 1 and 2 are used to roughly approximate the
edge of the obstacle. But what about corners?

Corners are trickier (see figure below), because typically only a single sensor will be able to detect
the wall. The estimate is off as one can see in the figure, but as long as the robot isn’t following
the wall too closely, it will be ok.

An example strategy for estimating a section of the wall is to pick the two sensors (from IR sensors
1-3) with the smallest reported measurement in ir_distances. Suppose sensor 2 and 3 returned the
smallest values, then let p; = ir_distances wf(:,2) and p; = ir_distances_wf(:,3). A vector
that estimates a section of the obstacle is ufw+ = p2 — p1.

Note: It is important that the sensor with smaller ID (in the example, sensor 2) is assigned to p;
(p-1) and the sensor with the larger ID (in the example, sensor 3) is assigned to ps (p-2), because
we want that the vector points in the direction that the robot should travel.

The figures correspond to the above example strategy, but you may want to experiment with
different strategies for computing ws, . A better estimate would make wall following safer and
smoother when the robot navigates around the corners of obstacles.

25

https://github.com/jdelacroix/simiam/archive/simiam-coursera-week-6.zip

2. Compute a vector, ufy p, that points from the robot to the closest point on u gy 4.
Now that we have the vector uy,,; (represented by the red line in the figures), we need to compute
a vector usy,p that points from the robot to the closest point on s, . This vector is visualized as
blue line in the figures and can be computed using a little bit of linear algebra:
’ Ufw,t |:$
u = 5, =
N L N

Ufw,p = (Ua — up) — ((ua — up) '“/fw,t)ulfw,t

:|7 Ug = P1

Ufqy,p corresponds to ufw.p and u’,, , corresponds to u_fw_tp in the code.

Note: A small technicality is that we are computing uy, , as the the vector pointing from the
robot to the closest point on s ¢, as if ut,,,; were infinitely long.

3. Combine the two vectors, such that it can be used as a heading vector for a PID controller that
will follow the wall to the right (or left) at some distance d,,.

The last step is to combine uy,, ¢+ and uy, , such that the robot follows the obstacle all the way
around at some distance dy,, (d_fw). ¢ will ensure that the robot drives in a direction that is
parallel to an edge on the obstacle, while wu s, , needs to be used to maintain a distance dy,, from
the obstacle.

One way to achieve this is,

e = wp oy wp
P = g |

where v, , (u-fw_pp) is now a vector points towards the obstacle when the distance to the obstacle,
d > dy., is near zero when the robot is df,, away from the obstacle, and points away from the
obstacle when d < dy,.

All that is left is to linearly combine u}w)t and u’fw’p into a single vector us,, (u_fw) that can be
used with the PID controller to steer the robot along the obstacle at the distance dy,,.

(Hint: Think about how this worked with uq, and ug:, last week).

How to test it all

To test your code, the simulator is set up to run +simiam/+controller/FollowWall.m. First test the fol-

low wall behaviour by setting obj.fw_direction = ‘left’ in +simiam/+controller/+quickbot/QBSupervisor.m.
This will test the robot following the obstacle to its left (like in the figures). Then set obj.fw_direction

= ‘right’, and change in settings.xml the initial theta of the robot to m:

26

<pose x="0" y="O" theta="3.1416" />

The robot is set up near the obstacle, so that it can start following it immediately. This is a valid
situation, because we are assuming another behavior (like go-to-goal) has brought us near the obstacle.
Here are some tips to the test the three parts:

1. Set u_fw = u_fw_tp. The robot starts off next to an obstacle and you should see that the red line
approximately matches up with the edge of the obstacle (like in the figures above). The robot
should be able to follow the obstacle all the way around.

Note: Depending on how the edges of the obstacle are approximated, it is possible for the robot
to peel off at one of the corners. This is not the case in the example strategy provided for the first
part.

2. If this part is implemented correctly, the blue line should point from the robot to the closest point
on the red line.

3. Set obj.d_fw to some distance in [0.04,0.3] m. The robot should follow the wall at approximately
the distance specified by obj.d_fw. If the robot does not follow the wall at the specified distance,
then u’,, , is not given enough weight (or u',, , is given too much weight).

How to migrate your solutions from last week

Here are a few pointers to help you migrate your own solutions from last week to this week’s simulator
code. You only need to pay attention to this section if you want to use your own solutions, otherwise you
can use what is provided for this week and skip this section.

1. The only new addition to the simulator is +simiam/+controller/FollowWall.m. Everything else
may be overwrite with the exception of QBSupervisor.m.

27

4.7 Week 7

Start by downloading the new robot simulator for this week from |simiam-coursera-week-7.zip. This week
you will be combining the go-to-goal, avoid-obstacles, and follow-wall controllers into a full navigation
system for the robot. The robot will be able to navigate around a cluttered, complex environment
without colliding with any obstacles and reaching the goal location successfully. Implement your solution
in +simiam/+controller/+quickbot/QBSupervisor.m.

1. Implement the progress_made event that will determine whether the robot is making any progress
towards the goal.

By default, the robot is set up to switch between avoid_obstacles and go_to_goal to navigate the
environment. However, if you launch the simulator with this default behavior, you will notice that
the robot cannot escape the larger obstacle as it tries to reach the goal located at (z, g) = (1.1,1.1).
The robot needs a better strategy for navigation. This strategy needs to realize that the robot is
not making any forward progress and switch to follow_wall to navigate out of the obstacle.

Implement the function progress_made such that it returns true if

e
Y—Yg
where € = 0.1 (epsilon) gives a little bit of slack, and dprogress (d-prog) is the closest (in terms of

distance) the robot has progressed towards the goal. This distance should be set using the function
set_progress_point before switching to the follow_wall behavior in the third part.

‘ < dprogress -6

2. Implement the sliding left and sliding right events that will serve as a criterion for whether
the robot should continue to follow the wall (left or right) or switch back to the go-to-goal behavior.

While the lack of progress_made will trigger the navigation system into a follow_wall behavior,
we need to check whether the robot should stay in the wall following behavior, or switch back to
go_to_goal. We can check whether we need to be in the sliding mode (wall following) by testing if
o1 > 0 and oy > 0, where

s o) [21] =
gtg u(m} o9 = Ufw-

Implement this test in the function sliding left and sliding right. The test will be the same
for both functions. The difference is in how u¢,, is computed.

3. Implement the finite state machine that will navigate the robot to the goal located at (x4, y,) =
(1.1,1.1) without colliding with any of the obstacles in the environment.

Now, we are ready to implement a finite state machine (FSM) that solves the full navigation
problem. A finite state machine is nothing but a set of if/elseif/else statements that first check
which state (or behavior) the robot is in, then based on whether an event (condition) is satisfied,
the FSM switches to another state or stays in the same state. Some of the logic that should be part
of the FSM is:

(i) If at_goal, then switch to stop.
(ii) If unsafe, then switch to state avoid_obstacles.

(iii) If in state go_to_goal and at_obstacle, then check whether the robot needs to slide_left or
slide right. If so set_progress_point, and switch to state follow_wall (with inputs.direction
equal to right or left depending on the results of the sliding test).

(iv) If in state follow.wall, check whether progress_made and the robot does not need to
slide slide_left (or slide_right depending on inputs.direction). If so, switch to state
go_to_goal, otherwise keep following wall.

You can check an event using obj.check_event (‘name-of-event’) and switch to a different state
using obj.switch_to_state(‘name-of-state’).

28

https://github.com/jdelacroix/simiam/archive/simiam-coursera-week-7.zip

How to test it all

To test your code, the simulator is set up to run a simple FSM that is unable to exit the large obstacle
and advance towards the goal.

1.
2.

Test the first part with the third part.

Test the second part with the third part.

Testing the full navigation systems is mostly a binary test: does the robot successfully reach the
goal located at (z4,y,) = (1.1,1.1) or not? However, let us consider a few key situations that will
likely be problematic.

(i)

First, the default code has the problem that the robot is stuck inside the large obstacle. The
reason for this situation is that avoid obstacle is not enough to push the robot far enough way
from the obstacle, such that when go-to-goal kicks back in, the robot is clear of the obstacle
and has a free path towards the goal. So, you need to make sure that the robot realizes that
no progress towards the goal is being made and that wall following needs to be activated for
the robot to navigate out of the interior of the large obstacle.

Second, assuming that the robot has escaped the interior of the large obstacle and is in wall
following mode, there is a point at which progress is again being made towards the goal and
sliding is no longer necessary. The robot should then stop wall following and resume its go-to-
goal behavior. A common problem is that the robot either continues to follow the edge of the
large obstacle and never makes the switch to go-to-goal. Another common problem is that the
FSM switches to the go-to-goal behavior before the robot has the chance to escape the interior
of the large obstacle using wall following. Troubleshoot either problem by revisiting the logic
that uses the progress_made and sliding left (sliding right) events to transition from
follow_wall to go_to_goal.

Remember that adding fprintf calls to different parts of your code can help you debug your
problems. By default, the supervisor prints out the state that it switches to.

How to migrate your solutions from last week

Here are a few pointers to help you migrate your own solutions from last week to this week’s simulator
code. You only need to pay attention to this section if you want to use your own solutions, otherwise you
can use what is provided for this week and skip this section.

1. Everything may be overwrite with the exception of QBSupervisor.m.

29

	Introduction
	Installation
	Requirements
	Bug Reporting

	Mobile Robot
	QuickBot
	IR Range Sensors
	Differential Wheel Drive
	Wheel Encoders

	Khepera III

	Simulator
	Programming Assignments
	Week 1
	Week 2
	Week 3
	Week 4
	Week 5
	Week 6
	Week 7

