[image:]
Lesson Plan: Day 2

Goals and Objectives
On Day 2, students will learn most of the remaining basic programming constructs, as well as how to do the following:
· Program if-else statements
· Implement loops, particularly for-loops, although you may introduce while-loops if time and level permit
· Become familiar with computer files, as well as navigate and reference directories
· Work with different data types when combining numbers with strings and, if time and level permit, get user input from the keyboard
· Create and index into matrices
· Matrix creation and indexing is relevant to all computer programming languages; however, it is particularly relevant to MATLAB — the Matrix Laboratory — as an array-based language. Thus, students will become familiar with one of the key distinguishing features of MATLAB.
In terms of creating music, students will learn about the different properties of sound and how the amplitude, frequency, and time sound wave affect how sound is perceived. They will have a chance to study musical notes and use MATLAB to see the sound waves corresponding to the notes. Finally, students will use the RedBoard in conjunction with MATLAB to create a popular tune and then get a chance to compose their own tunes.

Day 2 Overview
	Topic
	Type
	Duration (minutes)
	Optional Exploration (minutes)

	Revisit Creating Numeric Vectors
	Lesson
	10
	

	Indexing into Numeric Vectors
	Lesson
	10
	

	Doing Math with Vectors
	Lesson
	10
	

	Saving Variables from Workspace
	Lesson
	10
	

	Playing by Numbers
	Activity
	15
	+5

	Using Functions
	Lesson
	20
	+5

	Sound Has Properties
	Activity
	15
	

	Creating a Sound Wave and Playing It
	Activity
	20
	

	Lunch

	Creating a Function
	Lesson
	20
	+5

	Creating a Function to Add Two Waves

	Activity
	15
	

	Changing Parameters, Changing the Sound

	Activity
	10
	

	Playing Tones with the RedBoard

	Activity
	40
	

	Playing Chords Together

	Group Activity
	15
	

	Composing A Song

	Group Activity
	30
	+30

	
	Total Time
	4 hrs.
	+30 min.

Lesson – Revisit Creating Numeric Vectors (10 minutes)
Learning Objectives: Refresh the students’ memory of creating an array of numbers
Motivation: We will need to work with an array of numbers in the next few activities.
Materials: MATLAB
Steps:
1. Create an array of numbers on the screen and go over the concept again.
For example, >> numbers =[1 2 3 4 5 6 7 8 9 10]
 2. This should create a variable in the workspace called numbers.
3. Ask the students to make their own array of numbers.

Lesson – Indexing into Numeric Vectors (10 minutes)
Learning Objectives: Students should be able to extract subsets of numeric variables through indexing. This section is very important, so you may want to spend extra time here, using repetition to make sure the students understand indexing.
Motivation: Oftentimes we are interested in only a portion our array dataset. For example, you might want only the beginning or the end of a song. Let’s learn how to extract portions of our vectors.
Steps:
 1. You can create numeric vectors with the same syntax as with character arrays.
a. >> dice = [1 2 3 4 5 6]
b. >> roll = dice(3)
2. Optional: You can index more than one number at a time. Inside the parentheses, input the desired indices with square brackets as a vector. Even though you are giving more than one indexing number, you are still giving only one argument for indexing—namely, the indexing vector.
a. >> x = [1 2 4 4 3 1]
b. >> evens = x([2 3 4])
c. Ask the students to give you the code for the odd numbers.
d. >> odds = x([1 5 6])
3. If you want to get a sequence of numbers that are in all in a row, use the colon operator when indexing.
a. >> y = [1 5 3 8 2 100 200 500 200 300]
b. >> smallnumbers = y(1:5)
i. This tells MATLAB to get the first through the fifth numbers.
c. >> bignumbers = y(6:10)
d. This tells MATLAB to get the sixth through the tenth numbers.
e. In the bignumbers example, you are trying to get the sixth element all the way to the end. If you get all the elements up to the end, there is a special syntax for this. Use the keyword end in place of the final number.
f. >> bignumbers = y(6:end)

Lesson – Doing Math with Vectors (10 minutes)
Learning Objectives: Students should be able to perform arithmetic operations with vectors.
Motivation: Our goal at this time is to create, visualize, and play a wave in MATLAB. A wave moves up and down in time, and we are going to try to create many little snapshots of the wave moving through time. We can create a vector of many closely spaced instants in time, and then calculate where the wave should be at each moment in time. Once we figure that out, we will be able to see the shape of the wave and listen to it. Let’s learn how to perform calculations on vectors.
Steps:
1. You can add or subtract a number to a vector. A single number is called a scalar.
a. >> x = 1:5
b. >> y = x + 10
c. Ask the students how they would use y to get back the original vector x.
2. You can multiply or divide a vector with a scalar.
a. >> z = x * 10
3. You can add or subtract two vectors of the same size.
a. >> a = [2 2 2 3 3 3]
b. >> b = 10:15
c. >> c = b – a
d. Will the following code work or produce an error?
i. >> d = b’ – a
ii. It will produce an error because b’ and a have different sizes.
4. You can multiply or divide two vectors of the same size. In this case, however, you must use “dot” notation, which tells MATLAB to perform that operation between the corresponding elements.
a. >> d = b .* a
b. >> e = a .* a

Lesson – Saving Variables from Workspace (10 minutes)
Learning Objectives:
· Students learn how to save their variables from the Workspace
· Students learn how to retrieve the variables from the Workspace
Motivation:
After computing results and assigning variables, we would like to store the variables and use them in the future. In MATLAB we use the save command to store variables from the Workspace to a folder or a directory.
Steps:
1. Ask the students to move or create a folder in which they would like to save the variables.
2. Students can save a particular variable from the Workspace using the save (filename, variables) command. e.g., save('my_variables.mat', 'p', 'q').
Here my_variables.mat will contain the variables p and q.
3. Save all the variables from the workspace to a file by just save(filename).
>> save('all_my_variables.mat')
4. If filename already exists, save overwrites the file.
5. Ask the students to try saving all of their variables.
6. Once done, ask the students to delete the variables in the Workspace using the clear command.
>> clear
7. They can now retrieve the variables they saved by using the load command.
e.g., load ('all_my_variables.mat');
Alternately, they could drag the .mat file from the Workspace into the Command Window to load.

Activity – Playing By Numbers (15+ minutes)
Learning Objectives:
· Students create their own array of numbers
· Student use a function to play out these numbers

Motivation:
Apply the concept of creating array of numbers.
Steps:
1. We have provided the students with a built-in function called playNumber(). This function takes an array of numbers as input, and for each note it will play a corresponding tone on the speaker, one after another.
2. We will discuss what a function is in more detail shortly, but for now the students can consider it a command that does something based on the data you feed it. The data you feed it is called the input, and anything that results is the output. The input comes in parentheses.
a. Enter a command such as:
i. >> x = 1:8
ii. >> playNumber(x)
3. Give the students time to explore creating and playing notes.
4. Some things that the students can try:
	- Create a simple tune for a song like “Twinkle Twinkle Little Stars” or “Somewhere Over the Rainbow.”
	- Once the students have a tune, ask them to move the song up or down an octave.
	- Ask the students to save their variables to the Workspace so that they can retrieve them later.
TIP: If the array gets too long, the function could be playing the notes for a long time. To exit the function, use Control+C.

Lesson – Using Functions (20+ minutes)
Learning Objective: Students should understand the syntax for using built-in MATLAB functions, and they should use functions with vectors as inputs. Students can use the documentation to get help on functions.
Motivation:
Function is an important programming concept, but since the students have been using functions, e.g., playNumber, it is not necessary to familiarize them with the concept of functions at this time.
Steps:
1. Explain what a function is, including input, output, and calling syntax.
a. A function is a mini program. It does a particular task.
b. It takes input, what you want to change or use, in parentheses.
i. >> x = sqrt(25)
ii. sqrt is a function, 25 is the input, x is the variable name where the output is saved
c. A function does computation on that input. Sometimes it produces a number, and sometimes it does fancier things, depending on the function.
i. >> playNumber([1 2 3])
d. Usually, though, a function spits out a number or numbers to be saved in a variable. This is the output:
i. estimate = round(.7) (estimate is the output)
e. You can apply a function to a list of numbers.
i. >> y = [1.3 2.9 3.4 7.8]
ii. >> estimate2 = round(y)
2. MATLAB has many ready-to-use functions such as sqrt. You can read about the function by typing >>doc and then searching for sqrt or >>doc sqrt.
3. The doc has syntax of the function. Explain that syntax is basically the spelling and grammar of the function. Explain how the function needs to be used.
4. Ask the students to explore the documentation and find other examples of built-in MATLAB functions and play around with the functions. Point the students to the examples that will help them try out the functions. You can give them some time here and then ask them what they found.
5. Some popular functions to explore are plot, bar, plot3, life, spy, why. The why, life, and spy commands are particularly fun!

Activity - Sound Has Properties (15 minutes)
Learning Objectives: Students understand that sound waves have different properties and these properties relate to how the sound sounds.
· Amplitude corresponds to the loudness
· Frequency corresponds to pitch, which is different for different notes
Motivation:
MATLAB can be used to view sound waves and analyze them easily through its graphical functionalities. Let’s use this to study how different notes look.
Steps:
1. Go to the APPS tab and click on the Music App called Notes Frequencies …
[image:]
2. This should open up a window that looks like this:[image:]
3. Students can click on the notes at the bottom to plot the corresponding sound wave and play the wave out.
4. They can plot different notes with different amplitudes.
5. Explain what the x and y axis represent. The x-axis represents the time, and the y axis represents the amplitude of the wave.
6. The notes at the bottom each have a frequency associated with them. Explain that the frequency is measured in a unit called Hertz or Hz. This is basically a number of cycles per second. So, note A has 440 cycles per second of the sine wave.
5. Let the students explore different possibilities.
6. Help them realize that amplitude corresponds to the loudness, and that notes have different frequencies (pitch) which corresponds to how close or spread out the wave is.
7. Optional- Ask students to think of songs which exemplify the use of the different sound properties and have a discussion on the effect the sound properties has on the feel of the song.

Activity – Creating a Sound Wave and Playing It (20 minutes)
Learning Objectives: Students will create a script in which they will create their own sound wave, play it, and plot it.
Steps:
1. Begin a new script in MATLAB by clicking New in the HOME tab and selecting Script. A script allows users to write multiple lines of code.
[image:]
2. Create a numeric array containing the time values of the wave, by typing:
t= 0: 0.0001: 1;
This indicates to MATLAB to create a numeric array starting from 0 and ending at 1 with increments of 0.0001, and to store the values in a variable t. Essentially, what we are doing is creating a time variable that has 10000 samples in 1 second. The higher the number of samples in 1 second of sound, the higher the resolution of the sound. Music files such as mp3 have 44100 samples for 1 second of music.
Drawing this on the board might help explain this concept. Draw an x-axis with time points. Each time point has a y value of amplitude.
3. Create a corresponding numeric array of the sound wave:
wave = sin(2*pi*400*t);
We are using the sin function in MATLAB to create a sine wave of frequency 400 Hz. You can skip over the details of the sine wave if the students are having difficulty following. This basically creates 400 sound waves in 1 second. We store the values in a wave.
4. Make a graph to view the wave:
plot(t, wave)
We use the MATLAB function plot to make a graph with the amplitudes (variable wave) on the y-axis and time (variable t) on the x-axis, which in this case is 1 second.
5. Play the wave in MATLAB:
soundsc(wave,10000)
The soundsc function takes a numeric vector as input and plays it as sound. It also needs the sampling frequency (number of samples in 1 second of data) as a second input, which in this case is 10000.
6. The resulting script should look like this:
[image:]
7. Run the script using the Run button. It will prompt the students to save. Have the students name the script and save it to the folder.
[image:]

8. This should open a new plot window and play the corresponding wave.
9. Note: The plot will show 400 cycles of the sound wave in 1 second, so we will need to zoom in to the plot to see the actual waves. Using the tools on the window, students can zoom in and out of the wave to study the wave more closely:
[image:]
10. Students can change the values of the parameters of the wave, but it is very difficult to find out what to change and where and how to see the effect of the change. In the next lesson, we will create a function that easily allows for this.

Lesson – Creating a Function (20 minutes)
Learning Objectives: Students will be able to create their own function and use it.
Motivation: Multiple lines of code can be referenced using a single function name. Functions take in inputs, do some calculations on the input, and then give back a result. They are especially useful in programming when a task needs to be performed multiple times—they save a lot of time and effort.
Steps:
1. Tell the students they are going to create their own function to create waves and play them.
2. A function is a group of code lines that does a particular task.
3. Students will use the script they just wrote to create a function. The script is also in the solutions folder of Day 2 called sound_wave.m. We will copy these lines of code as the body of the function.
4. Create a new function in MATLAB by clicking New in the HOME tab and selecting Function[image:]
5. You should see a window with some code in it, it should look like this:
[image:]
6. Let us give a name to the function. Change the Untitled to a name, say playWave
[image:]

7. A function typically takes in inputs and gives out a result. Let’s deal with the inputs and outputs. Our function does not output any values, so we can delete the text
“[output_args] =”

The inputs to the function could be the parameters of the wave: frequency and time. Change the “input_arg” to F, T.

The code should now look like this:
[image:]

8. Now let us deal with the body of the function. Ask the students to copy the lines from the script they had earlier and paste the lines in between the lines % Detailed explanation goes here and end.
9. Ensure the input variables F and T are used in the code to represent the frequency and time. The variables copied from the script might need to be changed. After the changes are made, the function should look like this:
[image:]

10. Save the function by pressing Save. MATLAB will populate the file name to be the same as the function name. Press Save.

11. We are now done, so let’s access the function. In the MATLAB Command Window, to call the function, type the function name followed by the inputs in parentheses. Remember that the first input is the frequency and the second input is the time.

[image:]
Note: A script can be run by clicking on the Run [image:] button, however a function cannot. The reason for this is that the function needs some inputs from the user before it can execute. So it needs to be called from the Command Window
Activity: Changing Parameters, Changing the Sound (10 minutes)
1. Ask the students to call the function using different input arguments and see how those changes produce different sounds.
2. Ask them to notice what each of the parameters does.
3. Remember the first input is the frequency and the second one is the time.

LUNCH

Activity: Creating a Function to Add Two Waves (15 minutes)
Learning Objectives: Students will modify the playWave function to create their own function.
Steps:
1. Ask the students to use the playWave function and modify it to accept information about two waves, and combine these waves.
2. The waves can be combined by using the + operator.
3. The script file addWaves.m has the solution to this activity. This function can be called by:
	>> addWaves(300, 600, 2);
4. Notice that the waves must be of the same length for addition.
5. The plot command can take in a third argument to control the color of the plot. Ask the students to use one color for the first wave and another color for the second wave. The complete list of colors can be found by searching for color or color specification in the documentation.
6. To ask MATLAB to plot on the same window, use the command hold on;
7. To ask MATLAB to use a new window, use figure;

Activity: Playing Tones with the RedBoard (40 minutes)
Learning Objectives:
· Students learn to write a MATLAB script.
· Students learn how to call functions with appropriate input arguments.

Motivation:
Students will use MATLAB to play the Happy Birthday song!

Materials:
· [image:]MATLAB
· RedBoard
· Worksheet “Playing Tones with the RedBoard“

Steps:

1. This activity is to introduce the students to RedBoard and give them practice interfacing with the hardware. They will create a popular tune (Happy Birthday song) using MATLAB code, and play it on a small speaker connected to the board. A sequence of musical notes (frequencies), played at specific times for a specific duration, gives us a tune or rhythm.
2. Introduce the activity to the students. Tell them that we will get practice programming the hardware by playing the Happy Birthday song on the hardware speakers.
3. Ensure the RedBoard is connected to a USB port.
i. Ensure the buzzer is connected to the appropriate pins on the RedBoard.
ii. We will use Digital Pin 3 for this activity. Note this pin.
4. Begin by first connecting the board to MATLAB by using the command below:
>> board.Connect(4)
[bookmark: _GoBack]In that example, 4 is the COM port number. This will vary for each student.
5. This is an important concept for the activity:
Play a note with the command >> board.playTone(‘D3’, 440)
· playTone is a function of the board.
· The first input argument is the pin of the sensor that you would like to talk to. This is generally the first input argument to board functions. Ensure that the students understand that D3 here is digital pin 3 and NOT musical note D3.
· The second input argument is the frequency of the tone you would like to play.
6. Ask students to open the script “Happy_Birthday_Start.m”. This was the beginning of the song.

[image:]

7. Each music note has been saved as a variable for easier use. Explain to the students that G4, A4, etc are variables and hence they don’t need the single quotes around them when being used in board.playTone. Run the script. This will not sound like Happy Birthday. You must leave a short pause in between executions.
>> board.playTone('D3', G4)
>> board.playTone('D3', G4)
>> board.playTone('D3', A4)
>> board.playTone('D3', G4)
>> board.playTone('D3', C5)
>> board.playTone('D3', B4)
8. Tell students that the notes are being played and ask them why it does not sound right.
9. Hopefully the students will realize that they must pause MATLAB for a moment in between the execution of each board.playTone command. Regardless, eventually give them the answer. They need to use >>pause (0.2)
10. Introduce the player-piano notation we will use:
i. Give the students a handout showing the Happy Birthday song in player-piano notation, with time on the horizontal axis, and the notes to be played.
ii. They also have a table showing the conversion between the notes and the frequencies.

11. The students’ task is to play the Happy Birthday song in a MATLAB script. They must decipher the remaining notes from the player-piano notation into code using the board.playTone function.
12. Give the students time to explore copying and pasting the commands into a script. They will find that executing the commands in a script will result in notes being played all at the same time. This is because MATLAB executes all the commands in a script in order, but it does that very quickly.
The pause function is needed in between each command, where the pause function prevents MATLAB from doing anything for a specified period of time given in seconds.
Each tone lasts 0.2 seconds by default, so a pause of 0.4 seconds will create a fairly even melody.
13. The students can experiment with pause timings and the board.playTone function to produce Happy Birthday.
 	Question: How can the students slow down the composition?
Answer: They can increase the length of the pause.
BONUS:
a. What will happen if you run the command:
>> board.playTone('D4',392)
No sound will be produced because there is no speaker attached to the D4 pin.

Group Activity: Playing Chords Together (15 minutes)
Learning Objectives: Chords are made up three or more notes played simultaneously.
Motivation: Students will work together to play a chord progression.
Steps:
1. Ask the students to form groups of three or more. They will come by with a chord progression to create a short tune.
2. Each student will play a note and together they will play a chord. A chart with the list of chords can be found here: https://endofthegame.files.wordpress.com/2011/08/major-chords.jpg
3. Using the frequency table from the previous exercise, have the students play a short progression of chords.

Group Activity: Composing a Song (30+ minutes)
Learning Objectives:
· Students use what they have learnt to make tunes
· They are given an app to help compose tunes
Motivation: Let students have fun experimenting.
Materials:
· [image:]MATLAB
· RedBoard
· Worksheet “Playing Tones with the RedBoard“

Steps:
1. Students should form groups of three to do this activity.
2. The worksheet has a section for them to compose their own song the same way the notes of the Happy Birthday song were given to them.
3. To aid the students in this activity, a simple keyboard app has been provided. In the APPS tab, click on the music app Simple Keyboard
[image:]
[image:]

4. This will open a keyboard which has the notes written next to the corresponding keys. They can try creating different tunes using this keyboard. In the group:
i. One student will play the keyboard to come up with a tune
ii. Second student with write down the notes of the keys being played
iii. Third student will find the corresponding frequencies from the website provided in the worksheet – www.seventhstring.com/resources/notefrequencies.html
Students can take turns switching the activities within their groups
5. Once students have the sequence of music notes they want to play and their corresponding frequencies, they can write a script for it using the board.playTone function in the same way they did for the Happy Birthday song.
6. Encourage the students to make more complicated compositions by:
i. Changing the tone duration - The board.playTone function actually takes an additional argument to specify the length of the tone played on the speaker.
1. >> board.playTone('D3', G4) will play a frequency of 392 for .2 seconds (default)
2. >> board.playTone(‘D3’, G4, 0.5) will play the frequency for 0.5 seconds
ii. Adding Chords - you can play more than one note at the same time by simply not including a pause. You can use this to an advantage by playing chords — collections of notes. Or, you can even play more than one line of music at the same time.
7. Additionally, students can also find the music sheets for their favorite songs to get the frequencies of the music notes and use board.playTone to play their songs.
NOTE:
This activity can be done without the hardware and just using MATLAB as described below:
Students also have access to the sineSound function, which takes in one input argument of frequency and plays the wave. It is similar to the board.playTone function but does not need the board. Students can also use this function to compose their music without the board.
An example of using this function would be:
sineSound(G4);
pause(0.2);
sineSound(G4);
pause(0.2);
sineSound(A4);
pause(0.2);

© The MathWorks, Inc. 2015. MATLAB is a registered trademark of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Music Clips are provided by The Philharmonia Orchestra under a Creative Commons Attribution-ShareAlike 3.0 Unported License. The license agreement can be found at http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB. If you remix, transform, or build upon the material, you must distribute your contributions under the same license.

18		Lesson Plan Day 2

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

