[image:]
[bookmark: _Toc255804230][bookmark: _Toc255805312][bookmark: _Toc255805390][bookmark: _Toc258769444]Lesson Plan: Day 1

[bookmark: _Toc255804233][bookmark: _Toc255805315][bookmark: _Toc255805393][bookmark: _Toc258769447]Goals and Objectives
Day 1 provides an overall introduction to the three main topics that will be covered in the course: programming, music, and a hardware instrument. Students will understand music as organized sound, and they will learn some basic MATLAB programming.
As far as the musical aspect, students will learn that music is a structured and pleasing sound. However, today is more about sound—the precursor to music. Students will learn the physical basis of sound and the idea of sound as a wave. They will distinguish the different aspects of sound through visualizing and listening to those sounds. They will also learn to identify the direct relationship between the amplitude, frequency, and shape of a wave to its volume, pitch, and timbre.
Students will begin programming in MATLAB once the basic musical introduction is complete, and they will learn how to do the following:
· Execute commands in the command line and, by the end of the day, in scripts
· Create scalar and vector variables of numeric and character data type
· Identify the sizes and types of variables
· Index into a vector to extract values, but not how to assign values to a variable through indexing
· Perform basic arithmetical operations on scalars and vectors, including element by element vector operations
· Work with the colon operator in order to create linearly spaced vectors
· Create plots from vector arguments
· Use a basic function calling syntax and functions with both vector and scalar input with different numbers of inputs
· Parameterize their code to make it more flexible when writing programs (scripts)
· Programmatically interface with the hardware instrument
On the hardware side, students will be able to programmatically reference specific sensors, and they will be able to read and send data to specific sensors.

Day 1 Overview
	Topic
	Type
	Duration (minutes)
	Optional Exploration (minutes)

	Ice Breaker
	Activity
	10
	

	Sound and Music
	Discussion
	10
	

	Music Has Rhythm and Volume
	Activity
	10
	

	Sound is Made by Vibrating Air
	Activity
	10
	

	What is Programming?
	Discussion
	10
	

	Acting Out Programming
	Activity
	20
	

	Overview of activities to be covered during the week
	Discussion
	10
	

	Using MATLAB to Visualize Sounds
	Activity
	20
	+10

	Fun with MATLAB
	Activity
	10
	

	Using MATLAB as a Calculator
	Activity
	15
	+5

	Creating Numeric Variables and Variable Assignments
	Lesson
	20
	

	Units per…
	Activity
	20
	

	Customizing Your MATLAB
	Activity
	15
	

	Lunch

	Creating Character Arrays (Strings)
	Lesson
	10
	

	Indexing into Character Arrays
	Lesson
	10
	

	Creating Numeric Vectors
	Lesson
	20
	

	Decoding a Secret Message
	Activity
	15
	

	Sending a Secret Message and Decoding
	Group Activity
	15
	

	Connecting MATLAB to the Arduino Board
	Lesson
	20
	+10

	
	Total Time
	~4hrs
	+25 min.

[bookmark: _Toc255804236][bookmark: _Toc255805318][bookmark: _Toc255805396][bookmark: _Toc258769450]

Activity – Ice Breaker (10 minutes)
Learning Objectives:
· Get the students comfortable with their surroundings.
· Talk about the motivation for the course, which is to make music with programming, and get the students excited about it!
Steps:
Introduce yourself and then ask the students to introduce themselves. They will say their name and mention one fun thing they would like to do over the summer break, or their favorite song or artist.

Discussion – Sound and Music (10 minutes)
Learning Objectives: Students will engage in a discussion to help them distinguish between sound and music.
Motivation: If we want to make music, we should know what music is. If we are going to make sound from a computer, we should know what sound is. What is music? What is sound?
Steps:
Explain the purpose of the course — to programmatically create and listen to music from a computer. Then engage in a discussion about exactly what sound and music are.
Discussion Pointers:
· What is Sound? (ask the students for examples)
· Anything you can hear is sound: music, a human voice, airplanes taking off, dishwashers, thunderclaps, barking dogs, and so forth.
· What is Music?
· Music is a special kind of sound.
· Music is a pleasing kind of sound.
· Music has rhythm, a recognizable tune, and is made by people.
· Examples: List the songs or instruments they like.
· How is music made?
· People play instruments, they sing, and they play recordings of the same.
· How is sound made and where does sound come from?
· Explain that sound is just a result of moving air vibrations. Play the following video which illustrates this, here sound causes vibrations in the air which effect the shape of water falling out of a tap.
https://www.youtube.com/watch?v=uENITui5_jU

Activity – Music Has Rhythm and Volume (10 minutes)
Learning Objectives: Students will collectively create organized music from disorganized sound. They will demonstrate two key aspects of music: rhythm and volume.
Motivation: If everything we hear, including music, is a kind of sound, how can we make that special thing called music? Let’s do an activity to create music sound.
Steps:
1) Get the attention of the class. Tell them we are going to see if together we can create music from noise and hear the difference. All the students will be doing is clapping.
2) Tell all the students to clap. Get them to go crazy clapping very enthusiastically and, hopefully, in a random fashion. Ask them if this is music yet. (No)
3) Tell them to keep on clapping. While they are doing that, you will organize the students, group by group, to do special types of clapping. In a classroom of 20 students, try to have about four students per group. Everyone else should continue clapping as before (emphasize this), but point to one group. Tell this group that each member should clap exactly as you do, while you clap at a slow but steady rhythm (about two claps per second). The first group will be keeping the tempo for the rest of the exercise, so it should be an appropriate speed.
4) Go to another group and direct those students to clap in a different rhythm. For example, they could clap twice as fast as the other group, or twice as slow, or a combination of fast and slow claps. An interesting rhythmic challenge for some students will be to get them to clap three times as fast as the first group.
5) Ask them if this is music yet. (sort of) Tell the students that their sound has already changed because now it is no longer random—it has a structure. This is called rhythm.
6) However, it still does not sound that great as music. One component that is missing is volume, or how loud the sound is. Everything is at the same volume level, so all the sounds get mixed together. Now you take over as conductor. The students keep clapping their rhythms, however, on indication by you they should clap loudly (a high-hand gesture), softly (a low-hand gesture), or stop altogether (a stop-hand gesture). Through creative conducting, try to see if they can make an interesting rhythm or song. Feel free to improvise on your methods of conducting.
7) Ask the students if this is music yet. Ask what else is missing to make this more like music? (melody, singing, or lyrics are possible examples). If you are brave, you can try singing or whistling to add a melody on top of the clapping.
8) Explain that even though the fact that they were clapping never changed, the quality of the sound changed from random noise to something musical by adding the structures of rhythm and changing volume. Give a big round of applause for a job well done!
Activity – Sound is Made by Vibrating Air (10 minutes)
Learning Objectives: Students will learn that sound is caused by physical vibrations of the air. They will associate sinusoid waves with vibrations.
Motivation: We saw in the video that sound is caused by moving air. What does that mean? How can vibrations do anything?
Steps:
· Tuning fork (let student volunteers do any of these steps):
· Hit a tuning fork and ask the class if it is making a sound.
· While it is still ringing, hold the tuning fork still and ask the class if the tuning fork is moving.
· The tuning fork is vibrating very rapidly, and the sound we hear is due to the prongs vibrating the air around them.
· The speed of the vibrations determines the pitch.
· To view these vibrations, immerse the vibrating fork into a glass of water and watch the splashing that occurs.
· Explain that tuning forks are used in music because the sound that the tuning fork makes is an exact musical pitch that you try to “tune” your instrument to.
· Ask the students to hum the pitch of the tuning fork.
· You can also do this activity with just a music instrument and have the students feel the instrument vibrating when sound is produced.
· Guitar strings:
· Ask the students if they have ever wondered how a guitar causes sounds? It works in the same basic way as a tuning fork. When the guitar string is plucked, it causes a vibration in the air and, thus, a sound. What makes a guitar sound like a guitar is that much of this air comes from the vibrating air column inside the guitar. The shape of the guitar affects the way the sound vibrates and is heard.
· Ask the student what sound looks like? (kind of a trick question)
· Tell the students that air is vibrating in synch with the guitar strings and we can, through special photography with an iPhone, see the shape guitar strings make when they vibrate.
· Play a video that shows the shape of a vibrating guitar string. https://www.youtube.com/watch?v=TKF6nFzpHBU
· Tell the students that if we could see the air moving, in some sense it would look like that, but much faster. This shape is called a wave, specifically a sine wave, and that is why you have the term sound waves.
· Ask the students if they can think of anything else that moves back and forth like the peaks and troughs of this wave. (trace your finger moving up and down along an imaginary sine wave).
· Examples include rocking chair, a bouncing spring, and ocean waves.

Discussion – What is Programming? (10 minutes)
Learning Objectives:
· Discuss what programming is
· Talk about examples of programming applications
· Introduce MATLAB
Steps:
1. Introduce programming:
· Tell the students that one part of the course is about music and the other part is about programming. We will be making music using programs.
· Ask the students what they think programming is.
· Essentially, programming is a way to communicate with the device and instruct it to perform tasks.
· Human beings can make mistakes when doing large calculations. We also become bored or distracted when doing repetitive things, which they makes us more error-prone. Computers, on the other hand, are very quick at doing math and logic operations. They are also really good at doing repetitive things (e.g. changing traffic lights every 30 seconds) as they don’t have feelings like boredom. This makes computers very useful. But computers can’t think for themselves and need instructions for doing things, so they need humans to program them.
2. Discuss examples of programming and code applications:
· Apps on the phones such as Candy Crush or Instagram
· Websites: Facebook and YouTube
· Digital watches: Ask if anyone is wearing a digital watch and ask if it has code in it (it does)
Get the students to realize that they are surrounded my code and programming applications.
3. MATLAB is a programming language. Just like how we have different human languages to talk to one another. MATLAB is used for many different applications. Some examples are listed on the slide: Mars rover, airplanes, car monitoring systems, and so forth.

Activity – Acting Out Programming (20 mins)
Materials:
· Instrument Set
Learning Objectives:
· Explain programming through a class activity
· To run a program at the very basic you need:
· Human programmer – to write the code or program
· Computer – to process or execute the code
· Output Device – (attached to the computer) to show tangible outputs or results
· The students will act out these roles
· To reinforce the concept you could draw a parallel to an orchestra.
· Programmer similar to a Composer - who writes the music
· Computer similar to a Conductor- who runs the show
· The Output Devices are similar to Musicians- who play instruments
Steps:
1. Divide the students into groups of five.
2. Tell the students we are going to act out programming and have a mini concert.
3. Each group should have:
a. 1 Programmer (music composer)
b. 1 Computer (conductor)
c. 3 Output Devices (musicians)
4. In each group, ask them to decide who will be the programmer and the computer. The other three will be output devices.
5. For the Output Devices:
a. Find items in the classroom that are safe to use to make sounds or use the Instrument Set from the course kit.
b. Note: Find items in the classroom or gather materials that the students can use to make different sounds with. For example: cans, spoons, knock on the desk, rulers, aluminum trays or even snapping their fingers.
c. From each group, the three students acting as output devices should choose ONE sound each and name it – ask them to think of a word to describe their sound. For example, TING, BOOM, CLAP, SNAP, etc
d. Ask them to use a sticky note or index cards to tape the sound names they came up with on their clothes.
e. These names will become the commands that the programmer in their group can use. A command is a piece of code or instructions that the programmer writes for the computer.
6. For the Programmers:
a. Ask the programmers in each group to write out a sequence of sound names or commands on a piece of paper that sounds like a rhythm. For example, if a group has three sound names - TING, BOOM, CLAP – the sequence can be something like:
i. TING
ii. BOOM
iii. BOOM
iv. CLAP
v. TING
vi. BOOM
vii. BOOM
viii. CLAP
b. This becomes a list of commands which the programmer then hands to the computer. The computer reads the commands, and then does whatever tasks it is told to do.
7. For the Computers:
a. The Computers will then execute the commands line by line by pointing their hand at the corresponding output devices.
8. Output Devices:
a. The output devices now play their sound when the computer points at them.
9. Congratulate the class on writing and executing their first program!
10. Ask them what will happen if the programmer uses a fourth sound in his/her sequence which is not available in the group? (Ans: The computer will execute all the lines up until it reaches the fourth sound and then it won’t know who to point to. Basically it will give an error saying “I don’t know what you would like me to do here.”)
Concepts learned:
1. The programmer needs to use a valid set of keywords and syntax that the computer understands and can execute.
2. A command is a piece of code or instructions that the programmer writes for the computer.
3. The computer reads the commands, and then does whatever tasks it is told to do.
4. The computer cannot think for itself and guess what the programmer is trying to do.

Discussion – Overview of activities to be covered during the week (10 mins)
Motivation: Now that the students have a good understanding of what music is and what programming is, this is a good place to show them what they will be doing over the whole week. The idea is to give them an overview of some of the fun activities they will be doing so that they can get excited about the week.
Steps:
1. Show them the slides in “Bytes and Beats Overview”.
2. Each slide has notes to describe the upcoming activities briefly.
3. Put emphasis on the fact that there will be a Concert or Show-and-Tell at the end of the week and they can use a combination of all or some of these highlighted activities.
4. Feel free to show them some of the demos we have provided (or one of your own) so that they can get an idea of what they will be able to do by the end of the week. Some of the demos provided are in the code_files Demos folder.
Activity – Using MATLAB to Visualize Sounds (20+ minutes)
Learning Objectives:
· Students will be able to view the sound wave in MATLAB and view how sound looks like. Students will witness the effect on a sound by changing the wave’s amplitude and adding noise to it.
· Students will be able to open up MATLAB and execute a command given by the instructor.
Motivation: Are you ready to start working with computers? Let’s open up MATLAB and use it to explore the connection between the shape of a sound wave and its sound.
Materials:
· MATLAB
· [image:]Worksheet “Using MATLAB to Visualize Sounds”
· Vocabulary Handout
· MATLAB Functions Handout
Steps:
1. Ask the students to follow along with you on their computers.
2. Ask the students to open MATLAB by double-clicking the MATLAB icon on their desktop.
a) Have them give you a thumbs up when they have opened MATLAB.
3. The students shouldn’t worry at this time about what the different boxes and icons in the MATLAB window mean or do. We will cover those soon.
4. Ask them to go to the APPS tab and click on “Amplitude and Frequency”

[image:]

5. This will open an app which illustrates vibrations from different frequencies.
6. Get the students to change the frequency and amplitude values to see how these affect the vibration of the sound waves.
a) What happens when we increase or decrease the frequency?
i) Increase the frequency – the vibrations are quicker or more frequent
ii) Decrease the frequency – the vibrations are slower or less frequent
So frequency denotes how frequently the vibrations are happening.
b) What happens when we increase or decrease the amplitude? The height of the sound wave becomes larger or smaller accordingly.
7. Once they have had a few mins to see how vibrations cause sound waves, tell the students that we have another app to visualize and interact with sound waves, and we can bring it up by going to the APPS tab again and clicking on “Sound, Music and Noise”.
[image:]
8. Explain the purpose and use of the application. By pressing Play, the student will play a sound file that has noise in it. This noisy sound can be visualized on the application.
9. Get the students to move the Noise to Music scroll bar (bottom) and the Volume control (right) to adjust the noise added and the volume of the sound.
10. Hand out the “Using MATLAB to Visualize Sounds” worksheet and ask the students to fill it out by playing with the application.
11. Ask and discuss the following:
a) What happens when the noise is increased or decreased? How is the wave affected?
i) Increase the noise level – makes the wave really messy because it adds disturbances.
b) What happens when the volume is increased or decreased? How does the wave change?
The height of the wave
i) This corresponds to volume. The height, or amplitude, of a wave determines how loud it is.
ii) Students can increase the amplitude with the toggle in the program.
c) Does music stay recognizable as I add random noise to it?
i) Students can increase the amount of noise to the clip and view the effects.
12. Give the students the vocabulary and MATLAB function handouts. These have a list of useful terminology and MATLAB functions that the students have available for use.

Activity – Fun with MATLAB (15 mins)
Learning Objectives:
· Get the student to run some fun commands in MATLAB
· Student get comfortable and familiar with the MATLAB interface

NOTE: Use this activity as a fun filler activity now or later.

Steps:
1. At the Command Window ask to students to try the following commands:
a. >> fifteen : sliding game
b. >>why : MATLAB answers all questions!
c. >> knot
d. >> life
e. >> Lorenz
f. >>spy
g. >> xpbombs
h. >>xpquad
i. >>logo

Activity – Using MATLAB as a Calculator (15+ minutes)
Learning Objectives:
· Students should gain familiarity with the Command Window.
· Students should be able to execute commands.
· Students should be able to perform calculations.
Motivation: Computers are very good at crunching numbers. Let’s use MATLAB as a calculator and at the same time get practice interacting with the MATLAB programming language.
Materials: MATLAB
Steps:
1. Introduce the topic, which is using MATLAB as a calculator.
2. To tell MATLAB what to do, we can type commands at prompt in the Command Window:
Type:
>> 7 * 8
Then press Enter
(When you type, omit the “>>” because that is used only in this handbook as a notation to indicate text to type at the prompt in the Command Window.)
3. Explain that we have just entered a command on the command line.
a. A command is a piece of code or instructions for the computer. The computer reads what you wrote, and then does whatever tasks you told it to do. Recall the “Acting out Programming” activity and make the connection that we, the programmers, wrote a command for the computer.
b. The computer then completed the task when we pressed Enter. When you make the computer do the command by pressing Enter, that is called executing that command. The line where you execute a command in MATLAB is called the command line.
4. Go through basic mathematical calculations. The important thing here is the concept of execution. You type commands, such as numbers and arithmetic symbols, and when you press Enter on the keyboard, MATLAB will execute the command, or perform a calculation for the line you just typed. This is done at the prompt in the Command Window, which is the line with the blinking cursor beginning with the “>>” symbols. The overall white window they are typing in is the Command Window.
5. Ask for some calculations to be performed, and type them out if there is a response. Otherwise, perform your own calculations, such as
>> 6000000 * 120
This corresponds to 6 million people in Massachusetts * average weight of 120 lbs = weight of all the people in Massachusetts.
6. Be very explicit when giving the directions for typing in MATLAB
a. The +,-,*,/ symbols are plus, minus, times, and divided by, respectively. The ^ is to raise to a power, i.e. 3^5 is 3*3*3*3*3.
b. Press Enter to perform the calculation.
c. Students may ask if spaces matter. Tell them they do not (99% of the time they do not).
7. Let the students perform their own math calculations. Ask them for example calculations that they performed.
8. Congratulate the students on performing their first few calculations and commands in MATLAB!

Lesson – Creating Numeric Variables and Variable Assignment (20 minutes)
Learning Objectives:
· Students should be able to create numeric variables.
· Students should understand the rules for creating, combining, and renaming variables.
Motivation: When we perform a calculation, we can give the results a name. This allows us to easily recall the number later simply by recalling its name.
Materials: MATLAB
Steps:
1. Create two variables
a. >> first = 2 + 2
>> second = 7
b. We can see in the Workspace portion of the window that there are now some things (variables) called first and second with values of 4 and 7, respectively. Ask the students what they think the Workspace is for (it stores all the variables we are presently working with).
2. Tell the students that we can have MATLAB tell us again the value of that variable by typing its name. Ask the students what the output of this command will be:
a. >> first
3. Behind these names are numbers, so we can perform the same kinds of operations on them as we can with bare numbers. Put another way, (numeric) variables are simply numbers with a name tag. Ask the students what the result of these commands will be:
a. >> third = first * 2
b. >> donkey = first + second (Variable names are arbitrary, so have some fun making the students laugh with funny variable names)
4. Explain that the act of creating variables is called assignment in computer programming. While creating another variable, explain the general syntax for assigning variables in MATLAB:
a. The variable name is placed to the left of the equals sign (“=”).
b. A number or calculation is placed to the right of the equals sign.
c. The equals sign is actually called the assignment operator, and it is placed in the middle. An operator is a special symbol that tells the computer to perform a specific action, in this case, to assign a value to a variable name.
d. Press Enter to execute the command and create the variable.	
5. Ask the students what happens in the computer’s internal guts and hardware that enables it to remember a variable you created earlier. The variables get saved in the MATLAB Workspace but, more fundamentally, they are saved in the computer’s memory.
a. Feel free to go into a short discussion about computer memory if that works for you. For example:
i. Computer memory is a series of On and Off switches that the computer uses to remember things. MATLAB determines which switches get turned on for each variable, and we talk about the value in those switches with a (variable) name.
6. Ask the students why they think variables are useful.
a. When you use good variable names, it becomes easier to read code and share with collaborators.
7. If you do not want to see the result of your calculation displayed in the Command Window, put a semicolon at the end of your calculation.
a. >> invisible = 33*101;
b. Point out that invisible was created, and we can see it in the Workspace.
8. Sometimes you might type out a command without assigning the result to a variable. Ask the students to type out >> second + 2 and tell you what just happened.
a. The result of that command was a line that displayed ans = 9. Whenever you do not name a calculation, MATLAB will assign ans as the name.
b. Important: Every calculation and number must be given a name.
9. Naming rules: There are certain rules that you must follow when naming variables.
a. Variable names are case sensitive.
i. First is a different variable than first.
b. The only symbols allowed are letters, numbers, and the underscore “_”.
i. abc26 is an acceptable variable name, but 26abc is not.
10. Errors happen. Sometimes you may type something that the computer does not understand. When this happens, you will create an error, which MATLAB will indicate in red, sometimes with a useful hint about the error. Demonstrate an error with a bad variable name:
a. >> 5th = 100
b. Ask the students what they think of this command:
>> 100 = fifth (it is an error because the variable name must appear to the left of the assignment operator)
11. Test for understanding. The students are doing a great job if they are hanging in there with you. Give them praise and tell them it is necessary to start with the basics in order to move on to more fun and complicated things, such as making a musical instrument. Tell them to consider the following command and to think about what will happen for a moment, before they try it themselves and you try it together:
a. >> first = first+1
Some students might think that this will create an error because no number equals itself plus one. Others may see this as a valid command. After briefly discussing what might happen, have them run it themselves, paying attention to the value of “first” in the Workspace as they do. Then run it on the main display. This segues into the next concept.
12. Optional: You can reassign variable names, but this concept is potentially a conceptual pitfall, so spend time to make sure the students understand what is happening. Variable names are just name tags attached to numbers. We can remove that name tag and put it on any new number we like, even on that number itself plus one.
To put it another way, MATLAB computes the right side of the assignment operation. The result is just a number—with MATLAB it does not matter where that number came from. MATLAB then saves that number in the name on the left side. It also does not matter what was there before—it gets overwritten.
Test for understanding by asking the students what the results of the following commands will be (the last line is the trickiest one):
a. >> first = first + 1 (again)
b. >> first = first + 1
c. >> first = first + 2
d. >> second = first * 2
e. >> first = 1
f. >> second
Some students may think that second should have a value of 2. However, tell them that no new calculation was performed to change second’s value. On line “d” above, a number was computed with first*2, and it was assigned to second. Even though the value of first changes, the value of second will not because there was no assignment operation to change it.

13. Variable names cannot have spaces in them. For a variable name with multiple words, either capitalize the first letter of the subsequent words or use underscores between the words.
Example: jamesAnderson = 2 or james_anderson =2;

Activity: Units per… (20 minutes)
Learning Objectives:
· Use MATLAB to perform calculations
· Work in pairs and consult other pairs for information
· Assign the answer to a variable
Motivation: Practice solving a math problem in MATLAB and use variables
[image:]Materials:
· MATLAB
· Worksheets “Units per...” type A and B
Steps:
1. Tell the students that we will work in teams for this activity. Pair up the students.
2. Distribute the worksheets evenly among the pairs—type A to one pair, type B to another pair, and so forth
3. Each worksheet has three questions that are missing some information, so students will need to consult the other groups to identify what’s missing.
4. Ask the students to use MATLAB to find the answers to the questions. Ask them to use variables. Most of the problems involve multiplication.
5. Encourage the students to use variables to store the answers. For example,
>>MetersIn6Feet = 6 * 0.304
MetersIn6Feet = 1.824
Or, they could use more variables:
>>OneFootInMeters = 0.304;
>>MetersIn6Feet = 6 * OneFootInMeters
MetersIn6Feet = 1.824
6. Work through the questions on the screen.

Activity: Customizing Your MATLAB (15 minutes)
Learning Objectives:
This is a fun exercise for students—they change the colors of their MATLAB screen.
NOTE: Use this activity as a fun filler activity now or later.

Steps:
1. On your computer, change the color of your MATLAB screen. Then get the students excited about changing the color of their MATLAB screen.
2. To do so:
a. On the HOME tab, click on Preferences. It is the gear icon on the toolstrip.
b. Click on the Colors option
c. Unchecking the Use system colors allows you to change the colors of the background and text. Ask the students to choose colors they like.
3. Let the students move around and see what the other students have done with their MATLAB customizations.

LUNCH

Lesson – Creating Character Arrays (Strings) (10 minutes)
Learning Objectives:
· Students should be able to create character arrays.
· Students should be able to determine the type of a variable (character versus numeric)
· Students should be able to determine the size of a variable.
Motivation: Numbers are not the only things we can store in variables. We can store many types of data as MATLAB variables. How can we store the names of musical instruments as MATLAB variables?
1. Tell the students we can save text as a MATLAB variable by putting the word or words in single quotation marks. Again, the variable name is on the left of the equals sign and the value we want to save to that variable is on the right.
a. >> instrument1 = 'piano'
b. >> instrument2 = '2 flutes'
2. These types of variables are called character arrays. The character part is referencing the variable’s type or class. Highlight the Class column for the instrument1 variable. The words type and class mean the same thing. A character data type is something made of letters and symbols, and a double data type is what we save numbers as. In other programming languages, character variables are often called strings.
a. If a student asks, double stands for double precision floating point number.
3. Ask the students to make their own character variables. Let them have fun by using their names as variables names.
a. >> say = 'ryan is awesome'
b. >> ryan = 'is awesome'
4. Have the students find the variables they created in the Workspace.
5. Character arrays: Character type variables are made up of letters. Each letter occupies one block, similar to how in a crossword puzzle each letter takes up one block of space. In this way, what constitutes a word or sentence in a character variable really amounts to just a list of numbers. A collection of things in MATLAB is called an array. Actually, every variable in MATLAB is an array.
6. Arrays have type and size. You can see the type of an array in the Class column next to its name in the Workspace. You can see its size in the size column. It tells you how many blocks you have, or in the case of character arrays, how many letters.
a. The fact that size is ‘1xN’ for some number ‘N’ means that the blocks are all stored in a row.
b. Ask the students what the size of >> alphabet = 'abcde…z' would be.
i. 1-by-26
c. Ask the students to calculate the number of letters in their name.
i. myName = 'Dan Delano'
ii. The size of myName will be 1-by-10 as seen in the Workspace. Subtract 1 for the space, and the name ‘Dan Delano’ is 9 letters long.

Lesson – Indexing into Character Arrays (10 minutes)
Learning Objectives: Students should be able to index into character arrays.
Motivation: Suppose you are doing a crossword puzzle and you need to get the fourth letter of a word. How can you do this with character arrays?
1. Enter the command:
>> number = 'four'
2. To get the value of number in the fourth letter, put the variable name, followed by 4 inside of parentheses. As usual, save the result to a variable.
>> letter = number(4)
· How can you get the second letter of number?
· What is the result of: >> letter(4)
3. Extracting particular values from an array is called indexing. We index all the time in MATLAB.
4. After this example, lead the class in other examples to give them more practice. You can prompt them for the syntax to get a particular letter or letter-place, or you can show them the syntax and ask what letter that corresponds to.

Lesson – Creating Numeric Vectors (20 minutes)
Learning Objectives: Students will be able to create numeric row and column vectors. They will be able to create numeric linearly spaced numeric vectors with the colon operator, as well as arbitrary vectors with square brackets. They will also be able to transpose a row (column) vector to a column (row) vector.
Motivation: Besides words as lists of letters and characters, we often deal with lists (arrays) of numbers in MATLAB, called vectors. Soon we will use numeric vectors to simulate, visualize, and listen to a musically vibrating guitar string. However, this will still require some more work. First, let’s learn how to create numeric vectors.
1. Just as a word or sentence is an array of letters, we can have an array of numbers, called vectors.
2. To create character arrays, you would use single quotation marks at the beginning and end.
To create numeric vectors, you use square brackets [] at the beginning and end of your array.
a. >> lucky = [7 8 11 16]
3. Separate entries in a numeric vector with commas or spaces. They are equivalent.
a. >> lucky = [7,8,11,16]
4. The previous syntax created a row of numbers, also known as a row vector. To create a column vector, use semicolons instead of commas. (Tell students they have a cheat sheet to help them remember the syntax.) A vector is a special name for a single line of numbers.
a. >> dog = [1;2;4;5;8]
5. If you want to create a long list of numbers, you can use the colon operator.
a. As always, variable name or target goes on the left, while some computer computation goes on the right of the equals sign.
i. It may be a good idea to emphasize that the left side of the assignment operator is the target of a calculation rather than just a variable name. As such, a thought process will help the students think appropriately about indexing to change variables.
b. Syntax is as: Starting-number COLON step-size COLON ending-number
c. >> time = 0:1:8
i. This syntax tells you to start at 0, go up by one each time, and end at 8.
d. Create a few more vectors. Ask the students how many elements long they think each will be.
i. >> R = 3:0.5:5
ii. >> S = 4: 2 : 9 What will happen? (MATLAB does not exceed the final number)
e. When the step size is 1, you do not need the number in the middle. If you leave that number off, by default MATLAB will assume you wanted a step size of 1.
i. >> start = 1
ii. >> finish = 10
iii. >> startToFinish = start:finish
6. You can flip a row vector to a column vector, or vice versa, by adding a single apostrophe at the end of the vector. (‘) This is called transposing the vector.
a. >> startToFinish’
7. Ask the students to create their own vectors using the colon operator. Can the step sizes be negative? What if we did >> reverse = 10 :-1 :1
8. You can direct the advanced students to the linspace() function as well. Ask them to look up the syntax using the documentation for linspace. This can be done by typing >>doc linspace and referring to the examples.

Activity – Decoding a Secret Message (15 minutes)
Learning Objectives: Students will get to apply what they just learned in a fun activity. They will utilize row vectors and indexing into character arrays to decode secret messages.
a. Have the students clear their screen and Workspace:
i. >>clear
ii. >>clc
b. Ask the students to type the following lines of code in the Command Window:
i. >> secret = ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ii. >> code = [4 13 2 19 10 15 6 21]
c. This will load the variables code and secret to the Workspace.
d.
i. To decrypt the code, they must extract the letters with places corresponding to the numbers in the code. So, the most natural way would be to type the following at the Command Window:
1. >> letter1 = secret(4) …
2. >> letter2 = secret(13)
3. >>letter3 =secret(2)…and so on

ii. Once they get all eight letters, they will have spelled out a secret message. The answer in this case is CLARINET.
iii. A faster way to do this would be to type >> secret(code)
iv. Ask them to try another code. This time type:
>> code = [21 9 10 20 1 10 20 1 7 22 15]
v. The secret message this time is: THIS IS FUN

Group Activity – Sending a Secret Message and Decoding (15 minutes)
Learning Objectives: Reinforce the concept of indexing into arrays.
[image:]Materials:
· Worksheet “Sending a Secret Message and Decoding”

Steps:
1. Pair up the students. Each student will create a secret message for his or her partner and decode a secret message from that partner.
2. Hand out the worksheets to the students. The sheet has a table with an array of letters and their corresponding index in the array.
3. Use the table to create a code for your secret message. Example: [10 1 13 16 23 6 1 14 22 20 10 4] translates to “I love music”.
4. When the students have finished creating their codes, have them exchange codes with their partners.
5. Have the students use MATLAB (and not just pen and paper) to decode their partners’ messages.

Lesson – Connecting MATLAB to the Arduino Board (20+ minutes)
Learning Objectives: Students should be able to connect MATLAB to hardware, and they should be able to get sensor readings from the hardware.

Motivation: We can now play and visualize music. Let’s switch gears and work with hardware. The hardware will be an important part of our final music project. Let’s learn how to connect and get started with our instrument.

Materials:
· Hardware kit
· [image:]USB cable
· Safety glasses
· Worksheet “Connecting MATLAB to the Arduino Board”

Steps:
1. Gather the students around and describe the hardware. What is an Arduino Uno board? What are some cool things you can do with the board? What is the hardware kit we have for this course (Arduino + Breadboard + sensors + actuators)? How are the sensors and actuators connected to the board? How does the board connect to the PC?
2. Arduino boards with sensors interact easily with the real world where we can collect data and process that data. Talk about the IR sensor. One end throws out a beam of infrared light that cannot be seen by the human eye. The IR light hits a surface and is reflected back. The other end of the sensor reads the reflected light. What can we use this for? Talk about the breadboard and how it spreads out the signals. Explain that sensors are attached to pins. A pin is the numerically labeled connecting port on the Arduino board, and it’s either digital or analog. We will get data from and send data to a sensor by referencing its unique pin number.
3. Distribute the worksheets to the students and ask them to track the wires connected to the sensors back to the pins on the board and fill out the worksheet.
4. Note that the two sensors (IR sensor, variable resistor) are connected to analog pins and the two actuators (speaker, LED) are connected to digital pins. Explain analog vs. digital signals here.
5. The hardware connects to MATLAB through USB. Have the students connect the hardware to an empty USB port. Note the COM port # where the board was connected. If the COM port # doesn’t show up automatically in the bottom right corner of the screen, follow the steps below to get the COM port number:
i. Type “Device Manager” in the search bar in Start
[image:]
ii. This will open up the Device Manager. The COM port # for the hardware (Arduino Uno) should be available under “Ports (COM & LPT)”\
[image:]
ii. In this example, the COM port # is 9.
6. Once physically connected, in order to speak to the board from MATLAB, execute the following in the Command Window:
>> board.Connect(#)
Replace # in the above line with the COM port # that the computer shows as to where the board is connected, e.g.
>> board.Connect(9)
7. This dot (.) notation syntax is how we will interact with the board in general. Rather than using the = sign as the assignment operator, we will write board.someFunctionName(inputArgs). (Strictly speaking, these are methods for a board object, but we will not go into detail on this object oriented structure in this course.)
1. For your reference, these functions are:
i. board.Connect
ii. board.Disconnect
iii. board.readPin
iv. board.writePin
2. To disconnect from MATLAB, execute:
>> board.Disconnect
3. Demonstrate how to get sensor readings.
a. We want to read sensor information from the hardware. MATLAB will collect the sensor information as a number and use this to interact with the hardware.
b. Each sensor corresponds to a particular pin number, so reference that pin number.
>> board.readPin('D3')
>> board.readPin('A1')
c. Save the results to a variable:
>> pinData = board.readPin('A1')
 Change the position of the A1 sensor to A4. Does pinData instantly change? Check this by typing
>>pinData
at command line (Answer - No)
1. [bookmark: _GoBack]Enter >> pinData = board.readPin('D7') again. Does pinData change?
(Answer - Yes)
4. Explain digital pins vs. analog pins.
i. Digital pins tell you only whether the sensor is On or Off, or Yes or No.
1. On has a pin value of 1. Off has a pin value of 0.
2. Digital pins are ‘D#’ where the number is from 0 to 13 inclusive.
3. The pin argument must be entered in single quotation marks (as a character array.)
4. TRY – Use board.writePin() to turn the LED on. Then use the same to turn it off.
Solution:
>> board.writePin('D7', 1) % turns LED on
 >> board.writePin('D7', 0) % turns LED off
ii. Analog pins can give you a range of numbers:
i. Analog tells you a value, while digital tells you if the sensor is on or off.
ii. What you are getting is actually a voltage value. You are getting the strength of the electrical signal from the pin.
iii. Analog pins are ‘A#’ where the number is from 0 to 5 inclusive (e.g., 1.2343, 3.4004, etc.)
iv. TRY – Execute >>board.readPin('A1') and observe the output value. Is it a Boolean (1/0), or a whole number, or a real number?
v. (Answer – a positive real number)
8. Disconnect the board from MATLAB:
>> board.Disconnect

Let the students know that this is just an introduction to the Arduino board kit. They will do some more cool things, such as create music, in the upcoming days.

© The MathWorks, Inc. 2015. MATLAB is a registered trademark of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Music Clips are provided by The Philharmonic Orchestra under a Creative Commons Attribution-ShareAlike 3.0 Unported License. The license agreement can be found at http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB. If you remix, transform, or build upon the material, you must distribute your contributions under the same license.

23		Lesson Plan Day 1

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

