[bookmark: _Toc255804230][bookmark: _Toc255805312][bookmark: _Toc255805390][bookmark: _Toc258769444][image:]
Lesson Plan: Day 5
[bookmark: _Toc255804233][bookmark: _Toc255805315][bookmark: _Toc255805393][bookmark: _Toc258769447]Goals and Objectives
The objective for Day 5 is to have students enthused about their learning experience, and to provide a satisfactory conclusion to their work, regardless of the level of their programming and musical mastery. Students will have the afternoon free to explore coding as well as to tidy up any loose ends from the week’s projects.
A major activity – programming the circuit drawn on Day 4 to act as an additional input to the hardware instrument – will take place in the morning to provide some structure to the day. At the end of the day, students will be given green space to explore the concepts covered throughout the week. Students may take this as a completely open-ended activity to program what they like.
At the very end of the day, time will be set aside to draw the course to a conclusion and to ensure that students take with them all the files they will need.
The programming and hardware concepts today focus on reading sensor data and calibration. No two hand-drawn boards will provide the same voltage readings, so the students will be forced to calibrate their sensors.

Day 5 Overview
	Topic
	Type
	Duration (minutes)
	Optional Exploration (minutes)

	Using a Painted Sensor as a Musical Instrument
	Activity
	45
	+10

	Recording Your Voice with MATLAB

	Activity
	30
	

	Lunch

	Preparing for a Music Concert!
	Activity
	60+
	

	Wrap Up
	Activity
	30
	

	
	Total Time
	3 hrs. 20 min.
	

Activity - Using a Painted Sensor as a Musical Instrument (60+ minutes)
Learning Objectives: Students will be able to connect the customized sensor to the Arduino board and read voltage data from it using MATLAB. They will also learn about calibration of sensors and why it’s important. Students will demonstrate advanced problem solving abilities by programming the board to respond with little input from the teacher.
Motivation: Students will learn how to use a sensor that they designed the previous day as yet another input device. They will have to come up with an interesting idea on how to use this sensor with MATLAB and music.
Materials:
· MATLAB
· Painted sensor
· Arduino board
· Alligator clips
· Safety glasses
· [image:]Paint brush
· Worksheet “Circuit Board”

Steps:
Today we will start off with the circuits we drew yesterday. They had time to dry, and now we can use them as yet another (cool) input to our hardware.
1. Have the students collect the circuits they drew yesterday, from wherever they were stored, and bring them back to their desks.
a. Praise the students on the creativity of their sensor designs.
b. Ensure that the designs follow the guidelines provided the previous day, specifically that they contain one contiguous strip of paint. If there are any that are broken, apply a thin layer of ink to complete the circuit.
c. Hand the worksheet to the students to follow the circuit diagram connections.
2. Connect the Arduino board to MATLAB.
a. Connect the USB from the board to the computer.
>> board.Connect
3. Connect the painted sensor to the board with alligator clips.
a. Clip one end of the first alligator clip to one end of the painted strip. Connect the other end of the clip to a jumper wire going to 5V on the breadboard (the + strip).
[image:] [image:]
b. Clip the other alligator clip to the other end of the strip. Connect the other end of the slip to a jumper wire to GND on the breadboard (the – strip)
[image:] [image:]
c. Connect a jumper wire to the analog port, A3 and have the free end of the wire slide freely over the painted strip. The sensor is now ready to use!
[image:] [image:]
d. Tell the students that we now have a new sensor that could be used as a musical instrument. Moving the free end of the jumper wire across the paint strip will result in a different voltage reading every time.
4. Place the free end of the wire on the strip and then execute
>> board.readPin('A3')
a. You will see a voltage value returned in the MATLAB Command Window.
b. Move the wire to a new location on the strip, enter the same command, and then observe the voltage value. Repeat this for different locations on the strip and observe the voltage value returned each time.
5. Slide the wire terminal across from the start to the end of the paint strip.
a. The voltage reading should increase or decrease based on the direction that you slide across the strip.
b. It’s almost a linear change in the voltage value.
c. This looks familiar. We saw this sort of thing with the theremin.
6. Have the students experiment with getting readings for a few minutes, and have them compare their results with their neighbors.
7. Point out that their sensor readings are not necessarily the same as their neighbor’s or as yours. This is to be expected because the voltage readings depend on a number of factors of the painted sensor: width, thickness of the ink, length, dryness factor. These are different for each person.
8. Now we want to be able to do something with this sensor. Maybe we could make a tinny instrument that would annoy a friend or sibling!
9. Recall the playTone function
>> board.playTone('D3',131,1.7)
It can play an exact frequency (pitch) for an exact period of time.
10. Ask the students how you could get the board to play this low pitch (‘C3, C one octave below middle C’) if you press the beginning of the board.
a. Use an IF statement.
b. Very important: it must correspond to my specific sensor readings.
11. Take a few readings and estimate the range of the low end of your circuit. About what is the lowest value?
12. Create a new script
>> edit myFunkyInstrument (students should call it whatever they want)
13. Enter a variable for the lowest value.
>> lowEnd = 0.3
a. They should enter their lowest value, not yours.
14. Enter a variable for the sensor reading.
>> reading = board.readPin('A3')
15. Create an IF-ELSE statement with the help of the class.
if reading < lowEnd + 0.2
playTone('D3',131,1)
end
a. The 0.2 is a fairly arbitrary number chosen to select a small range on the circuit.
16. Execute the script.
a. If the students hear a noise, that’s good. If they do not, have them check their constants and also that they are touching the board in the correct location.
17. That is just the beginning of the instrument. They must finish it. In addition, they may alter it, or create additional programs to implement different functionality for the sensor.
a. For example, can you think of producing and recording drum beats from this sensor? (clue: touching anywhere on the strip is recorded as a beat)
18. Give them the task they need to do, and provide hints to help them with this task at your timing and discretion:
a. The instrument just plays a single sound once. You want it to keep on playing.
i. Clue: Wrap the code in a while loop to do this.
b. You can press CTRL+C to quit any program, including this one, but it would be nice if there was a way to tell the instrument to stop using the instrument.
i. (Students can, for example, tell the code to stop the instrument by using the IR sensor as ON/OFF device.)
c. Students may need IF-ELSEIF statements.
i. (They need them to test to see what voltage range the sensor is reading at.)
ii. Alternatively, they could just multiply the reading exactly by a particular constant, and then play that tone. See script circuit_option1.m for this implementation.
[image:]
19. Things to consider during the activity:
a. Students should calibrate the sensor to determine the value range.
i. The range of values along the painted strip is different for each student. They should calibrate the reading to find the minimum and maximum values for their sensor. If they intend to divide the strips into sections, they may also want to determine the value ranges within those sections.
b. They should play with the timings of the tone to see the effect on the sounds made.
NOTE: Due to the varying thickness and dryness factors of a painted strip, the readings will not always be precise and consistent. Make sure the ranges used during programming take into consideration the error tolerance. Explain to the students as this being a limitation of the sensor and workaround this limitation to still be able to achieve what you want.
Challenges: Create a new script that does something besides play a tone on the speaker. For example, different values may trigger different sounds, lighting up the LED, and so forth.
Another interesting spin-off of this would be to have two inputs—one from the proximity sensor and one from the painted circuit board to produce two different sounds!

Activity – Recording Your Voice with MATLAB (20 minutes)
Learning Objectives: Students will learn how to refer to the documentation to find a way to record their voices.
Motivation: Music with instruments is fun, but many songs have lyrics and voices along with the instruments.
Steps:
1. Ask the students to browse through the documentation to find a function that allows users to record their voices.
2. The function required is audiorecorder. The example in the documentation shows how you can record your voice for 5 seconds.
3. Ask the students to use this function to build a MATLAB script to record their voices. They can record a phrase, sing a song, or sing parts of a song. They can do this individually or in a group.
4. The script record_voice.m has the solution script to do this. Students can use this script to record their voice. They need to type the following in the Command Window:
>> edit record_voice.m
5. The script also plays back their recording in normal speed and in double speed, so it sounds like they are speaking like chipmunks!
soundsc(y,Fs) % plays recording back at normal speed.
pause(5)

soundsc(y,2*Fs) % plays recording at twice the speed (chip-munk!).

6. Students can try this trick on any other sound file as well.
[bookmark: _GoBack]7. In the next activity, students can overlay their recorded voice with a melody they create.

LUNCH

Activity – Preparing for a Music Concert! (60+ minutes)
Learning Objectives: Students will be able to spend time on any of the projects they have been working on.
Motivation:
Students will be preparing to show their peers some of what they have been working on during the week.
Steps:
1. Congratulate the students on having essentially completed the course.
2. We took them down many paths in the learning of computer programming, but we didn’t have enough time to explore them fully.
3. Students now have time to spend on some of the projects they have been working on during the week. Tell them that after some time they will be showcasing their work for their peers in a final music concert!
4. They are free to explore MATLAB and music in any way they like. However, so that they don’t get lost, remind them what we did in the course. Point them to the handout for the list of MATLAB functions that they used during the week.
5. Although the students generally programmed alone in this course, professional computer programmers often code with a partner. The students can feel free to do so (or not) from here on out.
a. Pair-coding benefits include:
i. Brainstorming allows them to come up with better ideas.
ii. Two heads are better than one when it comes to remembering syntax.
iii. It can be challenging, but also fun, to work with a partner.
6. Listed below are some of the paths taken in the course with an example of a project to work on:
Topics previously covered include:
a. Decision making.
i. If statements
b. for loops
c. Connecting to hardware:
i. Theremin
ii. Play tones on the hardware
d. Making musical compositions:
i. Polish an existing song or create a new song.
ii. Try to reproduce an existing song the students know.
iii. Take a movie trailer from YouTube, mute it if it has music, and add your own soundtrack.
e. Developing a musical instrument:
i. Add additional functionality to the empty sliders.
ii. Create your own special sound effect in addition to the ones included.
f. Additional programming concepts:
i. Random numbers: Use random numbers to add chance to your music or game.
ii. Plotting: Plot pretty geometrical figures in a variety of styles and colors.
iii. Error handling. (Challenging)
iv. Recursion. (Challenging)
7. Give the students time to develop their projects and put some finishing touches on their work. Have the students gather around and present their work. You could ask them to describe what they created and what programming concepts they used to do this.

Activity – Wrap Up (30 minutes)
Learning Objectives: The student will leave with all available materials to continue programming at home. They will have relevant work saved and ready to share with their parents or guardians.
Motivation: Our course time is winding down. Before you go, let’s make sure you have everything saved and know how to access the material at home.
Material: USB stick
Tip: It is important to have the aids help the students copy and paste the files appropriately. Check to make sure each student has everything saved which they need saved.
Steps:
1. Tell the students to save their music creations to .mp3 files.
2. Distribute USBs.
a. Have the students insert the USBs into their computers.
3. Open two Windows Explorer windows:
a. One for their i2 directory, and one for their USB directory.
b. Copy and paste from the i2 to USB directories:
i. Music (into the “Music” folder)
ii. Code files
4. Ask the students if they have any questions they would like to ask about programming or thoughts they would like to share.
5. Congratulate the students on becoming programming experts!

© The MathWorks, Inc. 2015. MATLAB is a registered trademark of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Music Clips are provided by The Philharmonia Orchestra under a Creative Commons Attribution-ShareAlike 3.0 Unported License. The license agreement can be found at http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB. If you remix, transform, or build upon the material, you must distribute your contributions under the same license.

10		Lesson Plan Day 5

image1.png
BYTES

An Introduction to Programming with MATLAB

Lesson Plan Day 5

O]

>> +[-

4\ MathWorks

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png
highEnd = 4.5;
lowEnd = 0.05;
£ = 131;

while (1)
reading = board.readPin ('A3');
board.playTone ('D3', f*reading,1);
end

