[bookmark: _Toc255804230][bookmark: _Toc255805312][bookmark: _Toc255805390][bookmark: _Toc258769444][image:]
Lesson Plan: Day 4

[bookmark: _Toc255804233][bookmark: _Toc255805315][bookmark: _Toc255805393][bookmark: _Toc258769447]Goals and Objectives
On Day 4, students will learn how to use MATLAB to combine sound clips together and use programming techniques to create a musical composition. They will also start working with electric paint to create a custom circuit board.

Day 4 Overview
	Topic
	Type
	Duration (minutes)
	Optional Exploration (minutes)

	Creating a Sound File for Silence
	Lesson
	20
	

	Concatenating Sound Files
	Lesson
	20
	+10

	Adding Sound Files
	Lesson
	20
	+10

	Creating a Melody using Addition and Concatenation
	Activity
	45
	+15

	Lunch

	Play with the MusicMixer
	Activity
	15
	+5

	Perform as a Band
	Group Activity
	45
	+15

	Creating a Music File of your own
	Activity
	30
	+10

	Making a Circuit Board
	Activity
	60
	

	
	Total Time
	4 hours.
	+1 hour.

Lesson – Creating a Sound File for Silence (20 minutes)
Learning Objectives: Students learn to create a sound file that represents silence in MATLAB.
Motivation: Students have seen many different types of sound files by importing them into MATLAB. They will now create a file that represents silence, and they will use this file in an activity later in the day. Silence is the absence of sound, which is an important aspect in music.
Steps:
1. Ask the students to think of a song where silence is used. An example could be the song “Hello” by Adele. You could play them the song and the students can then have a discussion on the effect silence has on the feel of the song.
2. Sound files have the information stored in them as samples of their wave. Import a sound file in MATLAB and go over this with the students.
	[y1,Fs] = audioread('guitar_A3_70001.wav');
Clicking on y1 in the workspace opening the numeric vector in MATLAB to view.
3. Ask the students what the corresponding numeric vector for silence would look like. The numeric vector should be composed of all zeros.
4. To make a numeric vector of zeros in MATLAB, we can do:
	a = [0 0 0 0 0 0];
To make a bigger vector of about a thousand length, entering the zeros can be tedious. In MATLAB there is a built-in function that lets us create such a large numeric vector.
	a = zeros (6,1);
5. Let us make a numeric vector of the reference size 40000.
	silence_vector = zeros (40000,1);
6. Once we have this numeric vector, we can create a sound file off of it by using the audiowrite command in MATLAB.
	audiowrite('silence.wav’,silence_vector, 44100);
The first input is the sound file to create, the second input is the numeric vector of the samples, and the third is the sample frequency of 44100.
7. Execute the commands the students should see the WAV file created in the current folder. Ask them to play the wave file and verify that it is indeed silence.

Lesson – Concatenating Sound Files (20+ minutes)
Learning Objectives:
· Students will learn to play notes one after the other
· Stringing notes together is also called “concatenating” them
· Students will learn how to concatenate sound files into one file.
· Get familiar with the instrument notes (guitar, trumpet, and violin) in the music library “Audio_Files_40000”
Steps:
1. Using the [image:] and [image:] buttons next to folder names, let’s navigate to the folder audio_files Audio_Files_40000 guitar_short_40000 which will have the files containing different guitar notes. Each guitar note has 40000 samples of the sound wave.
[image:]
2. If we want to create a new sound file which plays two notes of the guitar, say D4 and A4, then the way to do it would be to play the guitar_D4_40000.wav file first and then guitar_A4_40000.wav.
	Timing
	1
	2

	Guitar
	D4
	A4

Combining notes to play one after the other is called Concatenation. Let’s see how we can do concatenation in MATLAB.
3. Read in the sound files:
	[gd4,Fs] = audioread('guitar_D4_40000.wav');
[ga4,Fs] = audioread('guitar_A4_40000.wav');

The gd4 and ga4 variables have samples of the sound wave and Fs contains the sample frequency information. Here g in the variable name stands for guitar, followed by the note. They can have any variable name but having names that are descriptive are useful.
4. To concatenate the files, we would simply create a new vector and place the values one after the other. We can try this with two small vectors:
A = [1; 1; 1]
B = [2; 2; 2]
C = [A; B]
Result:
>> C
C = [1; 1; 1; 2; 2; 2]

5. In a similar fashion, to concatenate the samples, we can do:
	y = [gd4; ga4];
y now has 80000 samples (40000 samples from gd4 and 40000 samples from ga4)
6. We then use soundsc to listen to y to confirm it is indeed playing the two notes one after the other.
soundsc(y,Fs)
7. We can then use the audiowrite function to create a music file.
audiowrite('concatenate.wav',y,Fs);

8. Ask the students to play this file and verify that they hear the two notes being played one after the other.
9. Let the students concatenate some music notes on their own. They can use the following three instrument folders to practice concatenating notes.
[image:]

Lesson – Adding Sound Files (20+ minutes)
Learning Objectives:
· Students will learn how to add sound files together into one sound file.
· Adding essentially plays more than one note at the same time
· Familiarize with the percussion notes in the music library “Audio_Files_40000”
Motivation: Music often has multiple instruments and notes playing simultaneously. Student will now learn how to add sounds together to play different instruments or percussions at the same time.
Steps:
1. Using the [image:] and [image:] buttons next to folder names, let’s navigate to the folder audio_files Audio_Files_40000 percussion_short_40000 which will have a list of all the percussions available in the music library. Each percussion has 40000 samples of the sound wave.
[image:]
2. Ask the students to play a few of the files to see what sound each percussion file contains. From the MATLAB current folder, right click a sound file and select “Show in Explorer”. This opens a new window from where they can play sounds by double clicking them.
3. If we want to create a new sound file that plays two percussions simultaneously, we simply need to add the values.
	Timing
	1

	Percussion1
	cabasa

	
	+

	Percussion2
	djundjun

Playing beats simultaneously is called Addition. Let’s see how we can do this in MATLAB.
4. Read in the sound files:
	[p1,Fs] = audioread('cabasa_40000.wav');
[p2,Fs] = audioread('djundjun_40000.wav');
As before, the p1 and p2 variables have samples of the percussion sound wave and Fs contains the sample frequency information.
5. To add the files, we would simply need to add the values. Ask the students how they would do it. We can try this with two small vectors:
A= [1 1 1 1 1]
B= [2 2 2 2 2]
C= A+B;
>> C
C= [3 3 3 3 3]
6. To add the samples, we can do:
	y= p1+p2;
Note: the numeric vector to be added should be of the same length, hence we use the reference length of 40000. The students can add any files in the Audio_Files_40000 folder. They can also shorten and add sound clips to this folder.
7. We then use soundsc to listen to y to confirm it is indeed playing the two notes together
soundsc(y,Fs)
8. We then use the audiowrite function to create a merged music file.
	audiowrite('merge.wav',y,Fs);
9. Ask the students to play this file and verify that they hear both instruments play simultaneously.
10. Let the students come up with combinations of wave files of their own. For example they can even try adding a percussion to a violin note.
	Timing
	1

	Percussion
	cabasa

	
	+

	Violin
	G3

Activity: Creating a Melody using Addition and Concatenation (45+ minutes)
Learning Objectives: Students will create a script in MATLAB that will allow them to compose and easily create a melody
Motivation: So far the students used for loops to play different sound files. They will now create a script to compose and create a melody, which they will save as a sound file that they can take with them. Spend some time on this lesson as it has a lot of concepts.
[image:]Materials:
· MATLAB
· Worksheet “Creating a Melody”
Steps:
1. Distribute the worksheet and show the students the plan for the melody we want to create.
	timing
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	cabasa
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C

	guitar
	G3
	G3
	D3
	D3
	E4
	F4
	G4
	E4
	D3
	C3
	C3
	B3
	B3
	A3
	A3
	G3

	tambourine
	T
	X
	T
	X
	T
	X
	T
	X
	T
	X
	T
	X
	T
	X
	T
	X

X here represents silence or that instrument is not playing. The other letters indicate the notes to be played. In case of the cabasa and tambourine we have just one note and it is represented by the starting letter of that instrument.
2. [bookmark: _GoBack]We can use a function getNotes to enter the sequence of percussion and instrument notes into MATLAB. The getNotes function takes a character array as input as shown below:
cabasa = getNotes('C C C C C C C C C C C C C C C C');
tambourine= getNotes('T X T X T X T X T X T X T X T X');
guitar = getNotes('G3 G3 D3 D3 E4 F4 G4 E4 D3 C3 C3 B3 B3 A3 A3 G3');
3. We then need a for loop for the length of the melody, which is 16 in this case. This iteration of the for loop represents one unit of time as i goes from 1 to 16.

for i = 1 : 16

end

4. Inside the loop for every instrument we would need this block of code.

 str2 =char(guitar (i));
 if silence(str2)
 g = audioread('silence_40000.wav');
 else
 [g,Fs] = audioread(['guitar_' str2 '_40000.wav']);
 end

· i increments from 1 to 16.
· char(guitar(i)) extracts the note from the i th position in guitar
· We then use the silence function to check if the exacted note is X, if it is then we read in the silence file if not we read in the sound file of that corresponding note.

5. We need to construct the file name using the [] operator which concatenates the character arrays.

1st part is the instrument name: 'guitar_'
2nd part is the note which changes: str2
When i =1 – str2 is G3
..
When i =3 – str2 is D3 and so on
3rd part is the '_40000.wav'

6. Once we read the notes for every instrument, we need to add them into one variable:
	x = c + g + t;

7. After we have added the notes of the instruments together, we need to combine this with the notes from the previous iterations. We use the concept of a bin. A bin is a variable that collects values from every iteration of the loop. We can do this by:

	song =[song; x];

The first time the variable song is empty and needs a value, we just need a blank (silence) variable. So, we initialize the variable to:

song = zeros(40000,1);

8. After the end of the loop, the variable song contains all the notes we want.

9. Create a sound file out of this variable using audiowrite:
	audiowrite ('my_song.wav',song,Fs);
10. We can repeat the notes in our table multiple time by adding another for loop around the main for loop. This increases the length of the melody. Highlighted in green in the code below.
11. Let the students type out this code on their systems. The script should look like this. This script can also be found in the solutions folder for the day – file process_song.m
cabasa = getNotes('C C C C C C C C C C C C C C C C');
tambourine= getNotes('T X T X T X T X T X T X T X T X');
guitar = getNotes('G3 G3 D3 D3 E4 F4 G4 E4 D3 C3 C3 B3 B3 A3 A3 G3');

song = zeros(40000,1);

for j =1 :2

for i = 1: 16

%First Instrument
 str1 =char (cabasa(i));
 if silence(str1)
 c = audioread('silence_40000.wav');
 else
 [c, Fs] = audioread('cabasa_40000.wav');
 end

%Second Instrument
 str2 =char (guitar(i));
 if silence(str2)
 g = audioread('silence_40000.wav');
 else
 [g,Fs] = audioread(['guitar_' str2 '_40000.wav']);
 end
%
 %Third Instrument
 str3 =char (tambourine(i));
 if silence(str3)
 t = audioread('silence_40000.wav');
 else
 [t, Fs] = audioread('tambourine_40000.wav');
 end

%Add all the instruments
 x = c + g + t;

%Add the previous iteration
 song = [song; x];

end
end

audiowrite ('my_song.wav',song,Fs);
playSound('my_song.wav');

LUNCH

Activity – Play with the MusicMixer App (15 mins)
Learning Objectives:
· Students will use the Music Mixer app to create music
· They can experiment with different notes and percussions

Motivation: Students will be able to play with an app provided, the Music Mixer, to gain a better understanding of the concept of combining sounds by adding and concatenating.
Materials:
· [image:]HandOut3 “Using the Music Mixer App”

Steps:
1. On the APPS tab, click on the “Music Mixer” icon.
[image:]
2. This will open up the app shown below. Ask the students to refer to the handout “Using the Music Mixer App” which contains instruction sheet for the all the buttons in the app.

[image:]
3. Note to teacher: Ask the students to follow along with you at this stage. Type the following four music notes in the “Enter ♫ notes” box: D4 A4 G4 E4 and click on the small green play button next to Select Instrument

[image:]
The notes should play using the violin notes from the Audio_short_40000 music library and a plot of the notes should appear. This is concatenating the four notes.
[image:]
4. Ask the students to Select guitar from the “Select Instrument” dropdown and press the small green play button again
[image:]
It should now play the same tune using guitar notes from the Audio_short_40000 music library and update the plot.
5. Now ask the students to select the ‘agogo_bells’ percussion from the first percussion drop-down list
[image:]
6. Since percussions don’t have different notes like the guitar or violin– just one beat – students can add one percussion beat (P1) by clicking on the [image:] button next to Add and add one silence beat (X) by clicking on the [image:] button. Ask them to press [image:], [image:],[image:], [image:] to get P1 X P1 X
[image:]
7. Click on the play button inside the “Add First Percussion” panel. This will play the percussion beats sequence (Concatenating again!) as entered by us and update the plot to show just the percussion.
[image:]
[image:]
8. Now that we have concatenated and played the instrument and percussion beats individually, it’s time to add the instrument and percussion beats. Click on the big green play button to play them together and note the plot. The different colors correspond to different instruments being added one on top of the other.
[image:]
[image:]
9. Ask them to try adding more music notes or percussion beats (eg. P1 X P1 X P1) and try playing together again. This will not work unless the number of music notes equals the number of percussion beats.
[image:]
10. The [image:] button in the percussion panels can be used to remove a beat from a percussion sequence.
11. Give the students a few mins to gain familiarity with the app.

Group Activity – Perform as a Band (30 mins)
[image:]Materials:
Worksheet “Create a Melody of Your Own”

Steps:
1. Ask students to form groups of three or four students. They will use the app to form a music band.
2. Each student will be responsible for one music instrument. Ask them to pick different instruments from the ones available in the app. Students can use the worksheet to fill in notes they want to play.
i. One student will enter the music notes for the guitar/violin/trumpet.
ii. Note : For some help with notes of a couple of popular rhymes to get started, at the prompt in the Command Window, type in
>> winopen('songNotes.txt')
iii. Other students (2 – 3) will come up with a sequence of beats for a percussion of their choice (example: cabasa, bass drum, cymbals, etc). So everyone in the group is responsible for playing one instrument each.
iv. All percussion beats and music notes should be the same length
v. They should fill out the worksheet with their melody – Creating a Melody (Day 4)
3. Once everyone in the group is ready, they will hit ‘Play’ in each of their apps to play all the sounds together as a band!

Activity – Creating a Music File of Your Own (30 minutes)
Learning Objectives:
Student will use MATLAB to create the melodies and save them to .WAV files which they can take home.
[image:]Materials:
Worksheet “Create a Melody of Your Own”

Motivation:
The app lets you experiment, but students can’t create music files. They need to use MATLAB for that!
Steps:
1. Tell the students they now have all the necessary tools under their belt (except one major activity on Day 5 (implementing the circuit board) to make music.)

2. They are now free to create their own melody using the Music Mixer app by applying all the concepts they learned earlier in the day. The worksheet has tables that they could fill with the notes of their melodies.

3. Music files are usually stored as WAV or MP3 or MP4 formats for sharing. The app does not allow them to save their melody as a music files. It is simply there to help students come up with a combination of sounds they like. If they want to extract the melody they created as a WAV file so that they can play it for their parents and friends, they will need to write a program in MATLAB for it.

4. Their program will be very similar to the one they wrote for the first melody in the worksheet, the only things that will change are:
a. the beat sequences
b. the names of the instruments
c. the number of times the for loop should run.

5. Help them write a program that allows them to create the melody and save to a file. They can either chose to write a program for the melody they created as a band, or they can create a new melody.

Activity – Making a Circuit Board (60 minutes)
Learning Objectives: Students will prepare a circuit for programming on Day 5.
Motivation: We can add other sensors to our instrument; for example, hooking them up to the sliders in the app. One interesting and creative way to do this is by drawing our own circuits.
Materials:
· Paper
· Gloves
· Safety Glasses
· Electric Paint
· Brushes
Painting Guidelines:
· Ideally, the circuit should have two ends to connect to.
· Try to avoid overlapping of lines and loops.
· Ask the students to first draw a sketch with two lines so that it’s easier to fill in the paint in between these lines later.
Steps:
1. Inform the students that today they will prepare an additional sensor. It must dry before they can use it, so they will use it the next day.
2. The circuit will be made out of conductive ink. This is a special kind of ink that allows electricity to flow through it.
3. The amount of electricity flowing through it depends on a number of things: the shape of the pattern you draw, the thickness of the ink and, importantly, if and where you are touching it.
a. To keep things simple, the shape must be a line. It doesn’t have to be straight, but it cannot intersect or touch itself. Imagine a snake that never crosses over itself.
b. The thickness is hard to standardize. Everyone will have different thicknesses that will have to be accounted for by calibration tomorrow.
c. When you press your finger on different locations, since your finger also conducts electricity, this changes the reading of the circuit.
i. Technically you are reading a “voltage” like with the potentiometer.
4. We can use our finger to get different readings, and we can use these readings to control the instrument.
a. We will program that tomorrow.
5. Draw the outline of the circuit with a pencil.
i. The line must begin at one edge.
ii. The line must end at the other edge.
iii. The conductive ink line may not cross over itself or touch itself.
iv. The students should have fun making cool, loopy, creative designs.
v. Here are some examples of circuit designs that will not and some that will not.
[image:]
vi.
6. Check that the student designs meet the necessary criteria.
7. Have the students color in their designs with conductive ink.
8. Put aside the designs to dry until tomorrow.

© The MathWorks, Inc. 2015. MATLAB is a registered trademark of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Music Clips are provided by The Philharmonia Orchestra under a Creative Commons Attribution-ShareAlike 3.0 Unported License. The license agreement can be found at http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB. If you remix, transform, or build upon the material, you must distribute your contributions under the same license.

5		Lesson Plan Day 4

image1.png
BYTES

An Introduction to Programming with MATLAB

Lesson Plan Day 4

O]

>> +[-

4\ MathWorks

image2.png

image3.png

image4.png
= 1 audio_f

es
= 1 Audio_Files_40000
= L guitar_short_40000

12l guitar_A2_40000.wav
12l guitar_A3_40000.wav
12l guitar_A4_40000.wav
1l guitar_B2_40000.wav
1l guitar_B3_40000.wav
1l guitar_B4_40000.wav
12 guitar_C3_40000.wav
12l guitar_C4_40000.wav
12l guitar_D3_40000.wav
12l guitar_D4_40000.wav

12l guitar_D5_40000.wav

L retiidar E2 AQODON arians

image5.png
= 1L audio_files
= 1 Audio_Files_40000
® U guitar_short_40000
© U trumpet_short_40000
=) violin_short_40000

image6.png
= 1L audio_files
= 1 Audio_Files_40000

® U guitar_short_40000

= L percussion_short_40000
lYJagogo_bells_40000.wav
2 banana_shaker_40000.wav
12 bass_drum_40000.wav
1 bell_tree_40000.wav
12 cabasa_40000.wav
2l castanets_40000.wav
1 chinese_hand_cymbals_40000.wav
12 clash_cymbals_40000.wav
1l djembe_40000.wav
1 djundjun_40000.wav
1 ratchet_40000.wav

image7.png

image8.png
on_Plan_Day! - Word

HOME ~ INSERT DESIGN PAGELAYOUT REFERENCES MAIINGS REVIEW VIEW Debanjana Mukherjee

x f' X% cut . o #hFind -
: Do, Calibri (Body) nambecdc AaBbCc Assbeade assbeepe AaBDC(AsBoCet AQBI assbocr acabcene aombeeoe acsiccor asmbeepe AssbCcD AoRbci. AsSRCEDE [\ ylol
FAvORTES M [ST 2 22 TNomal TNoSpsc. Headingl Heading2 Tile Subtitle Subtlefm.. Emphasie IntenseE. Stong Quote IntenseQu. SubtleRef N seect-
¥ B8 8 o & @ apsons 1 o - arsrapn - s 5 cang -
edmA U Opmzan FDTmer Sysen Sgwmbss e et ol . E v : 2 s E s . B ’
Curen ot i s == ° LUNGH
[Name ~ Name + Value Size.
My apps
© Folder ans 70001 1 -
1 MusicMixerA [J irl irl irl irl irl c 40000x1 double 40000., o . . R
= Script Ampitudeand Musiclaer Note Siple Sound Wave Sound,lusi, cabasa 1x16 cell w6 L Activity — Play with the MusicMixer App (15 mins)
Frequency Frequences.. Keybowrd Mier andhoise
“Imerge.m filename ‘guitar A3_v... 1x36 . -
MATH, STATISTICS AND OPTIMIZATION o x| 183 63'); Fs 44100 1x1 Learning Objectives:
shorten. 40000x1 double 40000..) o :
° m @ (&) (&) 175} 5 5 5 5 2* &8 | H 6 Py o Students will use the Music Mixer app to create music
Cassification ~ Curve Fitng ~ Distribution MBC Model MBC MuPAD MNeuraiNet ~ NeuraiNet NeuralNet NeuralNet Optimization « i » * They can experiment with different notes and percussions
Leamer Fiting Fiting Optimization Notebook Clustering. Fiting Pattern Reco.. Time Series. b
Command History ®
CONTROL SYSTEM DESIGN AND ANALYSIS. Tor T 4 11/12/2015 9:43 AM ——% q Motivatinni Students will be able to pl.aY with an app prov.ided, the Music Mi).<er, to gain a better
* * L understanding of the concept of combining sounds by adding and concatenating.
8 8 8 8 & 8" @ musicMixer
System

Control System Control System Fuzzy Logic Linear System Model Reducer MPC Designer NewroFuzzy PID Tuner
Designer

= T YRS == — $-- 11/12/2015 9:57 AM —-%

2 musicMixer 1

I

HandOut3 “Using the Music Mixer App”

SIGNAL PROCESSING AND COMMUNICATIONS Top

[
s ke

»

simpleKeyBoard_v2

musichizer

SccrorRate £y Digan Frerdesons UTownek UTestio e UTlpek Rawiusin e Ao Ardesons musicMizer restore
v s Sravon | ilc et ot Thoughpt . RUCGerrstor coosso | Viovom A oaeet Arevis =
a o @ @ I 87 11/12/2015 5:47 BM % N 1. On the APPS tab, click on the “Music Mixer” icon.At the prompt in the Command Window, type
Sensor Ay SonslArabs Wovekt Widow [3 T Settings: musicMixer. Thisisopen up the app shown below. Ask the students to refer to the handout
“Analyzer Design & An.. Desin & An. s.matlab.desktop.HighDPISu

“Using the Music Mixer App” which contains instruction sheet for the all the buttons in the app.
- s.matlab.desktop.HighDPISu

s.matlab.desktop.HighDPISu

get (0, 'ScreenPixelsPerInch')
- s.matlab.desktop.HighDPISu. ..
ik s.matlab.desktop.HighDPISU. ..

IMAGE PROCESSING AND COMPUTER VISION

e | @ M @ @
Camera Color Image

Copyright 2014 -3 SITe, &%, L, R

@ @& @&

TESTAND MEASURENENT oz
* $-- 11/12/2015 5:48 PM —-%
2" 8 @ | get(0, 'screenpizelspertncn’)
bswument 07CD0a VeniceCA
Control Access Expl.. Bus Monitor $-- 11/12/2015 7:09 PM —-%
Tx i i
COMPUTATIONAL FINANCE o0 = musicMizer 11 Lesson Plan Day 4

$-- 11/12/2015 7:18 PM —-%

musicMixer
I doc
i — set (0, 'ScreenPixelspPerI...
34— end .
< get (0, 'ScreenPixelsPerInch')
Command Window ® 4~ musicMixer <

= [in 8 cold

image9.png
(&) musicMixer =

Let's make some music!

Select Instrument

Enter ﬂ notes violin B

v— B «~30 B
m— 8«80 B

Add Third Percussion

- 8«50 B

image10.png
Select Instrument

Enter ﬂ notes pensceeq violin -

image11.png
AL o . agasacass _ ashes el
e csemendh el A 50t o sl

Select Instrument

Enter ﬂ notes D4AGSES violin - ’

image12.png
e e e ey

Select Instrument

Enter ﬂ TEES EreT) qutar D

image13.png
Add First Percussion

T B (@[@‘

image14.png

image15.png

image16.png
Add First Percussion

agogo_bels

PIXPIX

B ~3E0 @‘

image17.png

image18.png
Add First Percussion

agogo_bels

PIXPIX

B =@ E‘

image19.png
4

image20.png
»—»—i—-‘»&

image21.png
740 Error Dialog

oK

image22.png

image23.png
Examples of designs that will work

.

Examples of designs that will not work

-

1/

No start or end point

Several intersecting Too thick
points

Disconnected lines

Too complex

