[bookmark: _Toc255804230][bookmark: _Toc255805312][bookmark: _Toc255805390][bookmark: _Toc258769444][image:]
Lesson Plan: Day 3

[bookmark: _Toc255804233][bookmark: _Toc255805315][bookmark: _Toc255805393][bookmark: _Toc258769447]Goals and Objectives
On Day 3, from a programming standpoint, students will learn these new major techniques: the concept of loops in programming to reduce repetition of lines of code, how to check for conditions using IF statements, how to use some of the built-in MATLAB functions, and how to look at the documentation to learn how to use the MATLAB functions and debug their code.
From a music perspective, students will learn how to import sounds into a programming language and how to edit sound files in MATLAB and export their modifications. They will also create their own musical instrument!

Day 3 Overview
	Topic
	Type
	Duration (minutes)
	Optional Exploration (minutes)

	For Loops
	Lesson
	40
	+10

	Practicing For Loops (optional)

	Lesson
	15
	

	Creating Your Own Musical Instrument! –
A Theremin

	Activity
	60
	

	Lunch

	Importing Sounds into MATLAB
	Lesson
	20
	

	Editing Sounds in MATLAB

	Lesson
	30
	

	Customizing Your Theremin

	Activity
	30
	+15

	Practicing While Loops (optional)

	Activity
	25
	

	
	Total Time
	3 hrs. 40 min.
	+25 min.

Lesson For Loops: (40+ minutes)
Learning Objectives: Students will be able to identify the need for a loop and learn how to create a for loop.
Motivation: The students created their musical pieces yesterday. In this script they probably have lines of code that are very similar to each other. Spend time on this section as loops are an important programming concept.
Recap the example from yesterday:
Let us take the Happy Birthday song script as an example:
board.playTone('D3', G4)
pause(0.2)
board.playTone('D3', G4)
pause(0.2)
board.playTone('D3', A4)
pause(0.2)
board.playTone('D3', G4)
pause(0.2)
board.playTone('D3', C5)
pause(0.2)
board.playTone('D3', B4)
pause(0.2)

As you can see, board.playTone is repeated multiple times. We can eliminate having to repeat similar lines of code by using for loops.
Steps:
1. Introduce the activity using the motivation above. You could ask questions such as:
Did you get tired of typing or copying and pasting the same lines of code over and over again?
2. Introduce the solution that is to use for loops.
3. A for loop repeats certain lines of code for a certain set of conditions. A typical for loop is shown below. Begin a new script in MATLAB and type the following code:
for i = 1 : 6
…..
…..
end

This loop executes the lines between the for and the end statements 6 times. The variable i is the counter. Every time the lines inside get executed, the values of i increments by 1. Once its value reaches 6, the loop ends and the lines after end are executed.

Notice that MATLAB automatically indents the lines inside the for loop to make it is easier to see what is inside and outside the loop.

4. So, you need the number of repetitions in order to make the for loop. Have the students count the number of times they use playTone, and that becomes the length of the loop.

5. Ask the students what lines they want to repeat. Below are the lines that repeat. Type these lines between the for and the end statements.

	 board.playTone('D3',G4)
 pause(0.2)

Ask the students what they think this loop does. (It plays the same tone G4 6 times.)

6. However, we want the frequencies to change. Since the frequency is different for each playTone statement, we need something that changes each time.

7. We will create a numeric vector containing all the frequencies and index into it. Ask the students, from what they have learned so far, how can we hold a bunch of values? We would need a numeric vector. Here is just the first line:

 f= [G4 G4 A4 G4 C5 B4];

 8. Here is what the first line of the song would look like with the for loop:

[image:]

9. Instead of specifying the frequency by its value, we will use f(i) since the value of i gets incremented automatically in the loop.
In the first run i =1, so f(i) = G4, which holds the value 392.
2nd run: i = 2, so f(i) = G4 again.
3rd run: i = 3, so f(i) = A4, which holds the value 440.
And so on until 6.
10. Ask the students to create a for loop for the Happy Birthday song. The for loop would need to run from 1 to 24. The students would also need to complete the numeric vector f for all the 24 notes of the song.
11. Now ask the students to add the timing information in the same way. Create a numeric vector with the pause timings (say p) and replace the constant pause value of 0.2 with pause(p(i)).
[image:]
12. Ask the students to save the script and to run the script. The length of our code is reduced significantly by using for loops.
13. Congratulate the students on having written their first MATLAB for loop.

Lesson – Practicing For Loops (optional) (15 minutes)
Learning Objectives:
Some exercises for students to practice loops. They will be able to:
· Create for loops with a linearly increasing “counting” dummy vector.
· Create for loops over a dummy vector which contains arbitrary elements.
· Use the dummy variable to index into a separate array.
· Use the dummy variable to perform calculations.
· Concatenate numeric vectors and character arrays by using the num2str() function.
Motivation:
It is annoying and repetitive to have to type this code out over and over for as many notes as we might have. Computers, however, are good at performing repetitive tasks. Using a computer and repeating a block of code over and over is called looping. We will loop through the code block above to play a melody by changing the note each run through the loop.

Steps:
1. Explain the motivation and that there are two types of computer loops.
a. Loops that repeat a certain number of times.
b. Loops that repeat forever until something specific happens, (such as when a button is pressed, or a maximum score is achieved, or the user quits, and so forth)
c. The first is called a for loop, the second is called a while loop.
d. We will use a for loop for this example.
2. Explain for loop syntax with a simple script:
a. It begins with “for” and ends with “end.” The code inside is repeated each run through the loop. k is a dummy variable we use for purposes just for the loop.
 for k = 1:6
 k
 end

b. k starts at 1 and ends at 6; the loop runs 6 time
c. the values of k are given as output each time
3. Ask the students what they think the output of the above code will be. Explain.
4. Slow the loop down. As computers are fast, the process happens almost instantaneously, but we can see this in slow motion if we pause the loop each time.
for k = 1:6
k
pause(0.5)
end

5. Do some math with k. Remember that k = 1:6 is just a vector. It is the same as k = [1 2 3 4 5 6]. Let’s also do some math with k.
for k = 1:6
k*3
pause(1)
end

6. Optional:
Initialize a variable. You can use for loops to repeatedly add to a variable. In order to do so, you must initialize the variable first.
a. For example, you can use a for loop to multiply a number by 2, 10 times.
for k = 1:10
 x = x*2
end
b. However, the above doesn’t make sense, as we do not know what x is to start off. Therefore, initialize x before the start of the for-loop.
x = 1
for k = 1:10
x = x*2
end
7. Optional:
Convert numbers to characters. In the ‘k-multiplied by 3’ example, we said “ k ‘multiplied by 3’ but it would be better to say the actual number, which is multiplying by three. How can we combine numbers and characters? (We will need to do this for our note array.)
We could try concatenating k and the string ‘multiplied by three is’
for k = [3 5 6 5 2 1]
[k ‘multiplied by three is’]
k*3
end 	
8. Optional:
The above doesn’t work because k is a number and we can’t just concatenate numeric vectors and character arrays. Instead, we need to turn the number k into its character version by first using the num2str function.
for k = [3 5 6 5 2 1]
[num2str(k) ‘multiplied by three is’]
k*3
end
9. Optional:
The name k, as all variable names are, is also arbitrary. We could call it anything, for example:
for note = [3 5 6 5 2 1]
[num2str(note) ‘multiplied by three is’]
k*3
end
10. Optional:
The vector [3 5 6 5 2 1] is just a vector. It could have been defined anywhere before, as well.
melody = [3 5 6 5 2 1]
for note = melody
[num2str(note) ‘multiplied by three is’]
k*3
end
11. Optional: Explain that the variables here are not named coincidentally. The students already have a melody vector corresponding to notes to be played. They can step through the melody vector in a for loop with the variable note being the present note to be played each time.

Activity – Creating Your Own Musical Instrument! – A Theremin (60 minutes)
Learning Objectives:
· Students will create their own custom musical instrument using IF statements in MATLAB
· Students will learn IF statements
· Students will learn while loops

Motivation:
A theremin is an electronic musical instrument controlled without physical contact. Here is a video that shows a simple theremin: https://www.youtube.com/watch?v=BFwhgsDOFFc

The basic concept is that, depending upon the distance between the hand and the sensor, different sounds are produced. We will read in the voltage from the sensor – the voltage is proportional to the distance. Depending on the voltage values, we will use IF statements in MATLAB to produce different sounds.

Materials:
· MATLAB
· RedBoard
· Proximity sensor, jumper wires, breadboard
· [image:]Worksheet “Theremin”

Steps:
1. Get the students excited about making their own musical instrument – the theremin. Show them the video of the theremin.
2. Ask the students: what exactly do they see happening?
a. Get them to notice that the device produces different sounds based on the distance of the hand from the board.
3. Introduce the proximity sensor:
a. Ask the students to locate the proximity sensor on the kit.
b. This sensor reads the distance of an object from it and produces a proportional voltage.
4. Tell the students we will be reading in the voltage levels in MATLAB and then produce different sounds for different voltage levels.
5. Work with the students to see if they have their circuit ready.
6. Calibration: We first need to determine the maximum and minimum voltages with some measurements. We are going to create a simple while loop to continuously read the voltage values.
a. Start a new script in MATLAB.
b. First connect to the board using >>board.connect(#)where # refers to the COM port #. This will also create a variable called obj that refers to the board.
c. Start the while loop using >>while(1)
d. Read the voltage at the pin using >> board.readPin('A1'). Recall that we had used this command on Day 1 to read in analog voltage. A1 is the analog pin 1 which is connected to the proximity sensor. At this point, ask them not to put a semi-colon after this command because we want to see the voltage recorded in the Command Window.
e. Add a pause of 1 second to make it easier to note the voltage readings >> pause(1)
f. End the while loop >> end
g. Your script should look like this:
[image:]

h. Run the script. Ask the students to place their hand over the sensor and measure the highest and lowest voltage values. Note this on the activity sheet.
i. To stop reading the voltage, we need to exit out of the loop. Use Control +C to do this and it will cause MATLAB to exit out of the current execution.
7. Complete the steps in the worksheet. The last step is the MATLAB code that the students will need to add.
8. Students can synthesize their own sounds using the functions they created and the ones we provided for them. Give them a list of the options they have so far:
board.playTone('D3', G4)
sineSound(E5)
playWave(300,0.5)
addWaves(300,600,2)
board.writePin('D7',1); This turns on the LED

		
9. In the script they have inside the while loop that is between the while and end statements… add the IF statements.
10. An IF statement checks for a condition. If the condition is met, then it executes the statement after it. If the condition is not met, it skips the next statement and moves ahead.
11. The script should look like this:
	-Make sure a semicolon is placed after the board.readPin('A1') function because we no longer want MATLAB to output the voltage levels.
	- The pause(1) can also be removed at this point.
	-Here is an example of the functions they can use to synthesize sounds. This can be found in the solutions folder of Day 3 in theremin1.m.

[image:]

12. To make the theremin produce more uniform sounds, the frequency input to the functions could be a function of the voltage read. So, we have:

[image:]

LUNCH

Lesson – Importing Sounds into MATLAB (20 minutes)
Learning Objectives: Students will learn how to import sound files in MATLAB and see what sound translates to on a computer. These files are simply numeric vectors.
Motivation:
So far students have been using synthesizing basic sounds in MATLAB, but what if students want to use preexisting sound files in MATLAB?
Sound files can be easily imported into MATLAB and edited. Students will have access to a library of sound files of notes from different instruments. This library was recorded by an orchestra in the UK.
Materials: MATLAB
Steps:
1. Ask the students to click on the little plus sign[image:] next to the audio_files folder in Current Folder section to view the other music folders in it. They can use the [image:] and [image:] buttons to navigate the folder structure and take a look at all the different musical notes and percussions available.
[image:]
2. Ask the students to right-click on an MP3 file to Open Outside MATLAB and play the files using the default audioplayer they have on their computers.
3. Ask them to notice that the audio files have notes of different instruments.
4. Ask them to also notice that there are long durations of silences in the files. So, if they were to string together the audio files like they did in the loops exercise, there would be a lot of silence.
5. We can use MATLAB to change that. Let’s first look at importing MP3 files.
6. Sound files have different extensions. The ones we have here are MP3
7. Ask the students to use MATLAB documentation to see if they can find a function in MATLAB to read audio files. The MATLAB documentation can be opened by typing doc at the prompt in the Command Window. Let the students search for a bit.
8. If they type read audio files the first result is the audioread function, which is the function we will be using!
9. Explain that from the documentation it looks like audioread has the syntax:
filename = 'guitar_A3_very-long_forte_normal.mp3';
[y,Fs] = audioread(filename)
filename – is the input argument – the file you want to import. y and Fs are the outputs: y is the sample data of the audio and Fs is the rate at which the samples were collected, or in other words, the number of samples in 1 second of data. The audioread function reads the file and provides the variables y and Fs as outputs.
10. Ask the students to import one of the MP3 files:
[y,Fs] = audioread('guitar_B4_very-long_forte_harmonics.mp3');

11. Once the amplitude values are imported into MATLAB, we can hear the sound by using soundsc

soundsc(y,Fs)

12. We can also view the sound file by using the plot command plot(y).
13. Ask the students to try importing a file and get them to understand that y is the sampled data from the sound wave and is simply a large numeric vector. The command length(y) will tell them how long the vector is or how many numbers the vector contains. Ask them to import, listen to and plot a few different sound files and also find out their lengths.
14. [bookmark: _GoBack]We can make changes to the numbers of this numeric vector to make changes to the sound, which we will see in the next section.

Lesson – Editing Sounds in MATLAB (30 minutes)
Learning Objectives: Students will learn how to edit the sound files they imported into MATLAB.
Motivation: Sometimes the audio files you have are not in a format that would suit your application, so you might need to edit them. In our case, they have long periods of silence that need to be removed.
Materials: MATLAB
Steps:
1. After listening to the sound files, we notice that there are long durations of silences in the files. So, if the students were to string together the audio files like they did in the loops exercise, there would be a lot of silence. We are now going to use MATLAB to edit these files.
2. The plot command can be used to visualize the sound file and find out where most of the amplitudes lie and what silence periods can be snipped. For instance, the sound files may have amplitudes (useful information about the note) between the samples 20,000 and 60,000.
3. Ask your students to follow along with you at this time:
a. Use audioreader to read in the audio file below into variables y, Fs just like in the previous activity.
	[y,Fs] = audioread('guitar_A3_very-long_forte_harmonics.mp3');
	b. Find out the length of the vector y and plot it
	>> length(y)
ans =
 276480	
[image:]

c. We can see that the data of interest mainly lies within the two vertical red lines, from around samples 80000 (0.8 * 10^5) to 150000 (1.5 * 10^5). We can then snip out the relevant portion of the sound file by using indexing.
	y1 = y(80000:150000);
	d. Use the length function to find the number of samples in y1.
	>> length(y1)
ans =
 	70001
e. Now we can use the function audiowrite to create our own file. Ask the students to check out the documentation for the function to find the correct syntax. The first input argument is the file name to create. The second is the sample data and the sample frequency, which can be the same as the original file.
audiowrite('guitar_A3_70001.wav',y1,Fs);

This will create a 'guitar_A3_70001.wav' in the current folder.
	
f. The resultant script should look like this and is available in the Day 3 folder called Edit_Sound.m.
[image:]
g. Students can play these audio files in MATLAB using a command playSound that was created for this course.
	>> playSound('guitar_A3_70001.wav')

Activity – Customizing Your Theremin (30+ minutes)
Learning Objectives: Reinforce the concepts that the students have learned today.
Motivation: Armed with different methods of producing sounds in MATLAB, students can now spend time customizing their theremins.
Pointers:
1. Encourage students to use variations of the board.playTones, sineSound, playWave, addWaves to synthesize their own sounds or use audioread to use sounds from the sound library to customize their instrument.
2. Encourage them to change frequencies, conditions of the IF statements, and so forth.
3. Let them walk around and get a chance to see what the other students came up with.

Activity – Practicing While Loops (optional) (25 minutes)
Prerequisite: Activity – Get User Input
Learning Objectives: Students will learn how to create while loops and how to terminate never-ending programs. Also, they will be able to evaluate expressions as true or false.
Motivation: The second type of loop is a while loop. The while loop keep running while some condition is true or, in other words, until some other condition is met. For example, they run as long as it is true that “score” is less than 100 or the run until “score” is greater than or equal to 100. It is the same thing. Let’s have the computer keep asking for input until we give a correct input.
Vocabulary: while loop
Steps:
1. Let’s see how while loops work.
x = 0
while x < 100
 x = x+1
end
disp('End of Loop')
2. First, x starts off at zero. Then the while loop begins. The code in the while loop is executed. Once the end is reached, go back to the beginning of the while loop. While x is less than 100 – go back and add one to it. Finally, when x equals 100, we exit out of the while loop and execute the next line of code and continue.
3. Do some more examples.
x = 0
count = 0
while x < 100
x = x^2
count = count+1
end
4. You can have never ending loops. Be careful. If your code ever runs for too long, or will not stop, you can manually end it by pressing CTRL+C
x = 0
while x < 100
x
end
CTRL+C
5. Just as x < 100 is a question asking if x is less than 100, we can check if a number equals a value.
6. To implement the while loop, we will keep asking the user for a password. While the user is inputting the wrong password, we will keep asking the user to try again. Using a tilde (~) first asks the opposite question. The tilde stands for “not.”
7. Implement the while loop. We need to initialize our variable first before putting it into the while loop, otherwise the loop won’t understand what variable we are talking about. So we first ask the user what the password is using the input function and store the response in a variable called password.
[image:]
8. Next we set the correct password to a value of our choice (1234 in this case). Then as long as password does not equal (~=) correctPassword, keep prompting the user to try again.

© The MathWorks, Inc. 2015. MATLAB is a registered trademark of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Music Clips are provided by The Philharmonia Orchestra under a Creative Commons Attribution-ShareAlike 3.0 Unported License. The license agreement can be found at http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB. If you remix, transform, or build upon the material, you must distribute your contributions under the same license.

12		Lesson Plan Day 3

image1.png
BYTES

An Introduction to Programming with MATLAB

Lesson Plan Day 3

O]

>> +[-

4\ MathWorks

image2.png
f= [G4 G4 R4 G4 C5 B4];

fori=1:6
board.playTone ('D3", f(i))
pause (0.2)

end

image3.png
f= [G4 G4 A4 G4 C5 B4];
p=1[0.40.20.60.60.60.8];

fori=1:6
board.playTone ('D3", f(i))
pause (p (i)

end

image4.png

image5.png
board.Connect (4)
while (1)

v= board.readPin('Al')
pause (1)

end

image6.png
board.Connect (4)
while (1)
v = board.readPin('Al');

if (v > 1.5) && (v < 2)
board.playTone ('D3', 400) $plays note from board speaker
board.writePin('D7',1);

end

if (v > 1) && (v < 1.5)
sineSound(600) % plays note from laptop speaker
board.writePin('D7',0);

end

if (v > 0.5) && (v < 1)
playWave (300,0.2) % custom function made by students
board.writePin('D7',1);

end

end

image7.png
board.Connect (4)
[Jwhile (1)
v = board.readpin('Al');

if (v > 1.5) && (Vv < 2)
board.playTone ('D3', v#400) $plays note from board speaker
board.writePin('D7',1);

end

if (v > 1) && (v < 1.5)
sineSound (v#600) % plays note from laptop speaker
board.writePin('D7',0);

end

if (v > 0.5) & (v < 1)
playWave (v¥300,0.2) % custom function made by students
board.writePin('D7',1);

end

“end

image8.png

image9.png

image10.png
Name

= Folder
audio_files
& | Audio_Files_40000

. guitar_short_40000
percussion_short_40000
& | trumpet_short_40000
@ . violin_short_40000
2 silence_40000.wav
B . guitar
[
. guitar_A3. “:m
2 guitar_A4. st

2 guitar_B2_ Open Outside MATLAB

4 guitar_B3._1 Show in Explorer
4 guitar_B4. Import Data...

) 2| JuitaryC3 . c ZipFile
AN e s/ 4

image11.png
0.15

0.1

0.05

-0.05

image12.png
[y, Fs] = audioread('guitar A3 very-long_forte normal.mp3');
soundsc (y, Fs)

length (y)

plot (y)

yl = y(80000:150000); % Indexing to snip out relevant portion
soundsc (y1, Fs)

length(y1)

audiowrite ('guitar A3 70001.wav',yl,Fs);
playSound('guitar A3 70001.wav')

image13.png
password = input('What is the password:

correctPassword = 1234;

while password ~= correctPassword
password = input ('Try again: ');
end

disp('You cracked it!')

