Lab 5: Estimating Velocity and Acceleration using Numerical Differentiation

One application for numerical differentiation is in feedback control. Feedback control involves using sensors to measure the output(s) of a system or process and applying corrective control signals to keep the system output(s) at some desired set-point or following some desired path. Feedback control is applied to electromechanical systems, chemical processes, aircraft control, and a host of other applications. Almost every engineering discipline at CEAS includes at least one course in feedback control. We are going to look at a simple scenario in this lab.

Assume we have a two-link robot arm and have sensors to measure the angular positions, θ1 and θ2. Also, assume that we need angular velocity and angular acceleration but do not have sensors to measure these quantities. Instead, we will estimate angular velocity and angular acceleration from the angular position measurements.

A. Practice Exercise

The table below shows position measurements taken every 0.25 seconds.

	Time
	0
	0.25
	0.5
	0.75
	1.0

	Position (deg)
	45
	50
	52
	60
	58

	Velocity 2PT (deg/sec)
	0
	
	
	
	

	Velocity 3PT (deg/sec)
	0
	
	
	
	

	Acceleration (deg/sec2)
	0
	
	
	
	

Complete the table using the following formulas to estimate velocity and acceleration from the position measurements.

[image:]

B. Estimating Velocity and Acceleration for Two-Link Robot Arm

We are going to use the θ1 data from last week’s lab to estimate angular velocity and angular acceleration.

1. Create a function in MATLAB that has one input argument, Δt, and no output arguments.

2. Define the following variables within your function:
Tf = 10;
Th_start = 18.717;
c = [1.178505; -0.176776; 0.007071];

Note: these values were taken from last week’s lab for the given start and end coordinates.

3. Create a vector of time values starting at 0, incrementing by the input argument, Δt, and not exceeding Tf.

4. Create a vector of position measurements for θ1 using the polynomial path from Lab 4:
[image:]
5. Use the position measurements to estimate the angular velocity at each of your time values using the 2-PT estimate for derivative.

6. [bookmark: _GoBack]Calculate the absolute value of the error between the 2-PT estimate for velocity and the actual velocity (Hint: Actual Velocity is derivative of equation for Theta in Step 4).

7. Create a second vector of time values that start at 0, increment by Δt/100, and doesn’t exceed Tf. Calculate the actual velocity at these new time values. Note: we are using a smaller increment so that the actual velocity will look smooth and continuous – not choppy.

8. Use the subplot command to divide the figure window into 2 sub-windows.
· In the top sub-window, plot both the actual velocity and the two-point estimate for velocity. Use a solid line for actual velocity and just data points (not connected) for the estimate. Hint: the formatting would look something like this: plot(t1,f1,'k-',t2,f2,'r*')
· In the bottom sub-window, plot the absolute value of the error. Plot as data points (not connected by a line).

9. Test your function for Δt = 2 and verify that you get the following plot. Note: not necessary to match the colors.
[image:]
10. Now use the position measurements to estimate the angular velocity at each of your time values using the 3-PT estimate for derivative.

11. Calculate the absolute value of the error between the 3-PT estimate for velocity and the actual velocity.

12. Modify your previous plot commands to do the following:
· The top plot should show the actual velocity, the 2-PT estimate for velocity, and the 3-PT estimate for velocity. The estimates should appear as data points (not connected). Add a legend, a title, and label the x-axis as time.
· The bottom plot should show the absolute value of the 2-PT estimation error and the absolute value of the 3-PT estimation error. Add a legend, a title, and label the x-axis as time.
13. Now use the position measurements to estimate the angular acceleration of your time values.

14. Calculate the absolute value of the error between the estimate for angular acceleration and the actual angular acceleration.

15. Use the figure command to create a new figure window. Subdivide the figure window into two sub-windows.
· In the top sub-window, plot both the actual acceleration and the estimate for acceleration. Use a solid line for actual acceleration and just data points (not connected) for the estimate. Add a title and label the x-axis.
· In the bottom sub-window, plot the absolute value of the error. Plot as data points (not connected by a line). Add a title and label the x-axis.
16. Run your function for each of the Δt values indicated below and paste the resulting plots where indicated.

Δt = 2 PASTE PLOTS BELOW

Δt = 1 PASTE PLOTS BELOW

Δt = .25 PASTE PLOTS BELOW

17. How does Δt affect the accuracy of your estimates?

18. What do you notice about the accuracy of the 3-PT estimate compared to the 2-PT estimate?

Turn in Next Week: This document with table results, plots, and answers to questions and your function file.
image1.png
Position(t) — Position(t — At)

Vel 2PT(t) = o

Position(t + At) — Position(t — At)

Vel 3PT(t) = T

Position(t + At) — 2 * Position(t) + Position(t — At)

Ace(t) =
ce(t) v

image2.png
Th = Thgeare + €4 t% + t* + c5t°

image3.emf
0 1 2 3 4 5 6 7 8 9 10

-10

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

