Lab 6:  Newton-Raphson Method for Solving Equations
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Background
Suppose we want to solve the equation f(x) = 0.  Let xo be an initial guess for the solution.  The Newton-Raphson method uses this initial guess to iterate to a “better” solution as follows:
x1 = x0 – f(xo)/f’(xo)

The updated guess, x1, can then be used to iterate to an even “better” solution as follows:

x2 = x1 – f(x1)/f’(x1)

This pattern continues so that the new guess depends on the previous guess as follows:

xn+1 = xn – f(xn)/f’(xn)

The iterative algorithm runs until |f(xn)| < ε (some small specified value) or until the number of iterations exceeds some specified value.

So, the algorithm becomes:
1. Make an initial guess, xo
2. Is |f(x0)| < ε?  That is, is the guess close enough to a solution?  If yes, finish.  If not, go to step 3.
3. Iterate to a new guess using the Newton-Raphson algorithm.
4. Is |f(xn)| < ε?  If yes, finish.  If not, return to step 3.

Problem 1:  Suppose we wanted to estimate the cube root of 73.  This is equivalent to solving the equation f(x) = x3 – 73 = 0.  A decent initial guess would be 4 since 43 = 64.  For this initial guess, work through three iterations of the Newton-Raphson algorithm by hand.  Assume ε = 0.0001.  Record all of your steps below.

Problem 2:  Write a MATLAB function that will take a function, f(x), and an initial guess for a solution to f(x) = 0 and search for a valid solution using the Newton-Raphson method.  Your function should continue to search for a solution until |f(xn)| < 0.0001 or until 100 iterations have been performed.  The function should output the final estimate of the solution (4 places behind decimal point), the value of the function at the final estimate (5 places behind decimal point), and the number of iterations performed to arrive at the final guess.  

Problem 3:  Test your program for the example discussed in Problem 1.  What is the final estimate? How many iterations of the algorithm are required to converge to within 0.0001 of the cube root of 73?  

Problem 4:  Test your program again for the example discussed in Problem 1 but use an initial guess of 10.  What is the final estimate? How many iterations of the algorithm are required to converge to within 0.0001 of the cube root of 73?  How does this compare to the more accurate initial guess in Problem 3?

Problem 5:  Test your program for the equation f(x) = x4 – 19x3 +89x2 + 115x – 1050 = 0 and for each of the following initial guesses.  Record the results.  Explain why there are four different answers.

a) xo = 12
b) xo = 8
c) xo  = 3
d) xo = 5

Problem 6:  Try the equation f(x) = 2 – x3 = 0 using an initial guess of x = 0?  What happens?  Why?  (Hint: work through one iteration of the Newton-Raphson algorithm by hand).  

Problem 7:  You determined in Problem 6 that division by 0 can sometimes occur in the Newton-Raphson algorithm which of course won’t work.  Modify your program to first check if  f’(xn)=0 before iterating to the next guess.  If the derivative is not zero, go ahead and iterate to the next guess.  If the derivative is zero, slightly modify the current guess before iterating to the next guess.  Using your modified code, re-run your program for the function f(x) = 2 – x3 = 0 with an initial guess of x = 0?  Results?

Problem 8:  Try the function f(x) = x3 – 2x + 2 = 0 with an initial guess of 1.  Does your MATLAB function successfully find a solution?  Why?  (Hint: try some iterations by hand until you see a pattern).  

Problem 9:  Modify your program so that if the number of iterations hits 100, the program will tell the user that he/she made a poor initial guess.  The program will then prompt the user for a new initial guess, reset the iteration count, and start over with the new initial guess.  Using your modified code, re-run your program for the equation f(x) = x3 – 2x + 2 = 0 with an initial guess of 1.  When prompted for a new initial guess, pick something other than 0 or 1.  Show a sample of your working code below?


To be turned in next week:
Turn in your answers to Problems 1-9 (Be sure you have answered all of the questions). Turn in your final version of the code once you have addressed the issues illustrated in Problems 6 and 8.  

  

