Lab 4: Two Link Robot Arm

Figure 1 shows a diagram of a two-link robot arm and includes the equations for the joint and gripper positions that were derived in Lecture 4.

1. Create a function in MATLAB that has no output arguments and six input arguments:

· x_start and y_start are the desired starting coordinates for the gripper
· x_end and y_end are the desired ending coordinate for the gripper
· L1 and L2 are the two link lengths

2. Add code to your function which will determine whether the link lengths are long enough to reach the desired starting and ending positions. If the links are not long enough, use the error command to terminate the function and send a message to the user that the links aren’t not long enough. Test your program to verify that this portion works.

3. Now add code to your function which will calculate the starting angles, Th1_start and Th2_start, in degrees from x_start and y_start (refer to Lecture 4). Note: you will get two solutions for each of these angles – pick the first solution.

4. Test your program using the following values for the input arguments: x_start = 2.4, y_start = 3.2, x_end = 0, y_end = 2, L1 = 3 and L2 = 2. Verify that you get the correct angles (Th1_start = 82.08o and Th2_start = -75.5o)

5. Now add code to your function which will calculate the ending angles, Th1_end and Th2_end from x_end and y_end. Test your program again using the same values from Step 4 and verify that you get Th1_end = 131.4o and Th2_end = -138.6.

We now are able to calculate the start and end angles, but we need to determine a trajectory to move the gripper from the starting position to the ending position. There are many, many different ways to do this depending on what the constraints are. For this lab, we will specify how fast we wish to move from start to end, Tf.

6. Add an input statement to your function that asks the user to enter the desired end time, Tf.

STEPS 7-10 should be done by hand – you should not be adding anything to your code when completing these steps.

We will specify a polynomial path for each of the link angles as follows:

[image:]

The variables c1, c2, c3 and k1, k2, k3 are constants that will be determined by using boundary conditions, derivatives, and matrix math (three equations and three unknowns).

7. The angular velocity is the 1st derivative of the angular position with respect to time. Using the equation for Th1(t) above, find an expression for the angular velocity of Th1. Remember, Th1_start is a constant value.

 Vel_Th1(t) =

8. The angular acceleration is the 2nd derivative of the angular position with respect to time or equivalently, the 1st derivative of angular velocity. Find an expression for the angular acceleration of Th1.

 Acc_Th1(t) =

9. At t = Tf, the final or ending time, the link angles will be at their ending positions, Th1(Tf) = Th1_end, the angular velocity will be zero,Vel_Th1(Tf) = 0, and the angular acceleration will be zero, Acc_Th1(Tf) = 0. Plug t = Tf into the equations for Th1(t), Vel_Th1(t), and Acc_Th1(t) and record results below.

Th1(Tf) = Th1_end =

Vel_Th1(Tf) = 0 =

Acc_Th1(Tf) = 0 =
10. Now, re-write the three equations in step 9 as a matrix equation (Ax = B). The only unknowns are c1, c2, and c3. Check with your T.A. to see that you have written these equations correctly.

11. Add code to your function to calculate c1, c2, and c3 by solving the matrix equation. Don’t use symbolic toolbox functions for this – not efficient method for this type of problem.

12. Add code to you function to calculate k1, k2, and k3 for the second link angle path. Note: this should be pretty easy!

13. Test your code using the following inputs:

	x_start = 6.5 and y_start = 0
	x_end = 0 and y_end = 2
	L1 = 4 and L2 = 3

	Enter Tf = 10 when prompted.

You should get the following values for the c and k constants.

c =
 1.1785
 -0.1768
 0.0071

k=
 -1.0700
 0.1605
 -0.0064

14. In your function, create a vector for time, t = 0:Tf/100:Tf

15. In your function, calculate Th1, Vel_Th1, Acc_Th1, Th2, Vel_Th2, and Acc_Th2 for the t-values. Don’t use symbolic toolbox for this, just enter the equations like you would any polynomial.

16. In your function, use the subplot command to plot the angular positions, angular velocities, and angular accelerations in a single figure window.

17. Run your function for the same test inputs given in Step 13 and paste your plot in the space below.

Tf = 10 seconds

PLOT

18. Run your function again using the same input arguments but a different value for Tf. Paste your plot in the space below and note the value you chose for Tf.

Tf = ____________

PLOT

19. Answer the following questions based on your plot from Step 18:

Q1: When are the angular velocities maximized or minimized?

Q2: What happens to the angular velocity as Tf decreases? Why?

Q3: When are the angular accelerations maximized or minimized?

20. In your function, using the same vector of t-values, calculate xjoint, yjoint, xgripper, and ygripper over this time range. Just enter the equations, don’t use Symbolic Toolbox.

21. In your function, add the command figure to create a new figure window. You will now add code to create a simulation of the movement of the robotic arm, similar to how a cartoon is created, by creating static graphs of the position of the elbow joint and gripper for each time value calculated and displaying them in rapid succession. To do this, add a for loop that will index through your calculated values for the elbow and gripper locations and do the following:
· Plot the two link robot arm for the current t-value (refer to last slide in Lecture 4)
· Create a square axis that will keep robot arm in view:
 	 axis([-(L1+L2) L1+L2 -(L1+L2) L1+L2])
· Pause for Tf/100 seconds to simulate real-time motion: pause(Tf/100)

22. Run your function to test the simulation of motion. Paste the final figure below.

PLOT

[bookmark: _GoBack]
Turn in Next Week: Your script file and this lab document.
image6.png

image7.png

image1.png

image2.png

image3.png

image4.png

image5.png

