

Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis

Dakai Hu, Ph.D MathWorks Application Engineer Haiwei Cai, Ph.D ANSYS Application Engineer

Motivation

- Traditionally, workflow of the machine design team and the control team have proceeded separately.
- DoE on a dyno setup requires an understanding of the machine characteristics and simulation can help determine a minimum number of points to test.
- Accurate torque ripple profile of a high fidelity machine model facilitates the development of torque ripple mitigation algorithms.

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

Objective and Workflow Overview

Objective and Workflow Overview

Process raw data into proper format through MATLAB scripting

Bring processed data into Simulink saturation + harmonics motor model structure

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

Three Levels of PMSM Model Fidelity

Lumped Parameter

Saturation

Saturation + Spatial Harmonics

Lumped-Parameter Model

Required Parameters

Electrical Model
$$v_d = Ri_d - L_q p \omega_r i_q + L_d \frac{d}{dt} i_d$$

$$v_q = Ri_q + p\omega_r (L_d i_d + \lambda) + L_q \frac{d}{dt} i_q$$

$$\omega_e = p\omega_r$$

$$T_e = 1.5p[\lambda i_q + (L_d - L_q)i_d i_q]$$

$$T_e = 1.5p[\lambda i_q + (L_d - L_q)i_d i_q]$$
 $T_e = K_t i_q \text{ (assumes round rotor, } L_d = L_q)$

Mechanical Model

$$\frac{d}{dt}\omega_r = \frac{1}{J}(T_e - sgn(\omega_r)J_0 - b\omega_r - T_{load})$$

How to Get Those Parameters?

Motor Tests	Parameters Identified	Identification method
Back EMF Test	Number of Pole Pairs (p) Flux Linkage Constant (λ) Torque Constant (K_t)	Calculation
Friction Test	Viscous Damping Coefficient (b) Coulomb Friction (J ₀)	Curve fitting
Coast Down Test	Rotor Inertia (J)	Curve fitting
DC Voltage Step Test	Resistance (R) Inductance (L)	Parameter estimation

https://www.mathworks.com/company/newsletters/articles/creating-a-high-fidelity-model-of-an-electric-motor-for-control-system-design-and-verification.html

Saturation Model

Two Ways to Obtain Saturation Data

Dyno testing

FEA

Nonlinear Flux and Current Tables

Saturation PMSM Model in Simscape

Saturation + Spatial Harmonics Model

Rotor Position Dependency

Animation: flux variation at different rotor position

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

How to Obtain Saturation + Spatial Harmonics Data?

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Workflow of Importing Maxwell ECE model to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

Saturation + Spatial Harmonics Model Structure in Simulink

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

What does ANSYS Maxwell do?

 ANSYS Maxwell is a premier low-frequency electromagnetic field simulation solution which uses the highly accurate finite element method to solve static, frequency-domain, and time-varying electromagnetic and electric fields. Typical application of Maxwell includes electric machines, transformer, actuator, sensor, etc.

FEA Meshing for Induction Machine

2D FEA PMSM Model

3D FEA PMSM Model

Objective and Workflow Overview

ANSYS Maxwell generates Model_RawData.txt file

Process raw data into proper format through MATLAB scripting

Bring processed data into Simulink saturation + harmonics motor model structure

How to obtain raw data for PMSM model by ANSYS Maxwell? Steps to Generate ECE Model for PMSM

Step1: Create Regular FEA Model

Step2: Specify Model Resolution

ECE3_Model

Name	Value	Unit
DeviceName	ECE3_Model1	
Windings	PhaseA,PhaseB,PhaseC	
CurrentSwe	(30A, 10)	
PhAngInter	2	
Status	Active	

ECER_Model

Name	Value	Unit
DeviceName	ECER_Model1	
RotAngMax	15	deg
InElecDeg		
RotAngInter	15	
SkewAng	0	deg
Poles	8	
Status	Active	

Step3: Run FEA Model to Generate Lookup Table

What is Equivalent Circuit Extraction (ECE) Model in ANSYS Maxwell

• ECE Model - A circuit model based on a lookup table from precomputed Finite Element Analysis result. It is also known as Reduced Order Model (ROM).

ECE Models Needed for PMSM – ECE3 and ECER Equivalent Circuit Extraction (ECE)

- Maxwell Circuit Components for Sweep Setup
 - ECEW_Model: ECE one winding model
 - ECE3_Model: ECE three-phase model
 - ECER Model: ECE rotation model
 - ECEL Model: ECE linear motion model
 - ECET_Model: ECE transformer model
- ECE Model Formats
 - ECE Simplorer model in file .sml
 - ECE Look-up table for third parties (Saber, ETAS, NI)
 - ECE VHDL model (Future)
 - -- ECE Simulink Model (.txt)

May 8, 2017

Models Needed for PMSM

ECE3_Model - Setup the sweeping of currents in three-phase windings

ECE3_Model1

ECER_Model - Setup the sweeping of rotor position

ECER Model1

ECE3 Model - Setup Sweeping of Current in Three-Phase Winding

- CurrentSweep: Specify Current Range and Resolution
- PhAngIntervals: Choose Current Sweep Coordinate System

ECE3 Model - Current Sweep Coordinate System Options

- 1) DQ Coordinate System:
- 0: positive d & q. 1: positive q, all d. 2: all d & q (default)

- 2) αβ Coordinate System
- 3) Polar DQ Coordinate System

ECER Model - Setup Sweeping of Rotor Position

- RotAngMax: Maximum rotating angle for sweep for each Id-Iq variation.
 In balanced cases, a 60 elec. degree sweep is sufficient.
- Auto d-axis alignment (no need to manually adjust initial rotor position)
- Slots: enable a separate lookup table for cogging torque.

Fast Model Generation Technique - Partial Model Sweeping for Symmetric Structure

• 60 Degree Phase Symmetry - Duplicate Data from 60 degree segments:

PhaseA Reconstruction: A, -B, C, -A, B, -C

PhaseB Reconstruction: B, -C, A, -B, C, -A

PhaseC Reconstruction: C, -A, B, -C, A, -B

One 60 elec. Degree Sweep

360 elec. degree Reconstructed

Example – Setups- Takes 3 h 30 min single core

Name	Value	Unit
DeviceName	ECE3_Model1	
Windings	PhaseA,PhaseB,PhaseC	
CurrentSwe	(30A, 10)	
PhAngInter	2	
Status	Active	

Name	Value	Unit
DeviceName	ECER_Model1	
RotAngMax	15	deg
InElecDeg		
RotAngInter	15	
SkewAng	0	deg
Poles	8	
Status	Active	

15 deg/mech. = 60 deg/elec. for an 8 pole machine

• Current Sweeps: $(10*2+1)^2 = 441$ Id-Iq variations

Id = -300A, -270A, ..., -30A,0,30A,..., 270 A, 300A

Iq = -300A, -270A, ..., -30A,0,30A,..., 270 A, 300A

- Rotor Position Sweep: 0 deg (d-axis), 1 deg, 2 deg, 3 deg,...,14deg. 15 rotor positions.
- For each Id-Iq variation, 15 rotor positions will be swept to reconstruct a 360 elec. degree sweep.
- Total number of time steps calculated = 441 * 15 = 6615. (About 2 second/step)

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

Objective and Workflow Overview

Process raw data into proper format through MATLAB scripting

structure

Four Steps in Maxwell_to_MATLAB Script.m

Model_RawData.txt → Maxwell_to_MATLAB Script.m → Simulink Model

- Step 1: Import Original Raw Data from Maxwell ECE Model.
- Step 2: Create (Id, Iq, Angle) to (Flux D, Flux Q, Torque) Lookup Table (3D Lookup Table) based on the raw data.
- Step 3: Create inverse lookup table to get current from flux input.
 (Flux D, Flux Q, Angle) to (Id, Iq, Torque) Lookup.
- Step 4: Provide additional Parameters.

Initial rotor angle, phase resistance, rotor inertia, friction coefficient.

n-D Lookup Table in Simulink

- There are three Tabs in the n-D Lookup Table block: 1) Table and Breakpoints; 2)
 Algorithm and 3) Data Types.
- As an example, the screen shots below show a Table and Breakpoints setup for daxis flux 3D lookup table. Iq_index, Id_index, Angle_index and Flux_d_ofIdIqTheta are defined in Workspace already.

Set up n-D Lookup Table in Simulink

Model Structure.

Current to Flux Lookup - Maxwell Direct Result Current Excitation, Frequency = 2 Hz, 30 rpm No Mechancial Dynamic

Content

MathWorks

- Objective and Workflow Overview
- Three Levels of PMSM Model Fidelity
- How to Obtain Saturation + Spatial Harmonics Data
- Saturation + Spatial Harmonics PMSM Model Structure

ANSYS

- Introduction of Maxwell Equivalent Circuit Extraction (ECE) Model
- Importing Raw Data from Maxwell Finite Element Result to Simulink
- Comparison between PMSM model in Simulink and Maxwell (FEA)

Objective and Workflow Overview

Bring processed data into Simulink saturation + harmonics motor model structure

Comparison between Simulink model and Maxwell FEA model: Four cases to compare current, flux, and torque waveform.

- 1. Open circuit
- 2. Sinusoidal winding current input
- 3. Voltage input under constant rotor speed
- 4. Voltage input with mechanical dynamic (Starting of PMSM)

Simulink model

Maxwell FEA model

Example – Prius IPM motor – Open circuit – Cogging torque & Back EMF

Flux to Current Lookup - Inversed Maxwell Result Cogging Torque Waveform Display, Voltage = 0, Frequency = 0.4 Hz. (6 rpm), Phase Resistance = 3.45 Ohm. NO Mechanical Dynamic

- Simulink result is compared with Maxwell result. The results are very close.
- Inverse lookup is successful.

Simulink Result

Maxwell Result

0.40 0.60

42

Sinusoidal winding current input Torque ripple

Current to Flux Lookup - Maxwell Direct Result Current Excitation, Frequency = 2 Hz, 30 rpm No Mechancial Dynamic

- Simulink result is compared with Maxwell result. The results are identical.
- Data transfer is successful.

Simulink Result

Maxwell Result

Voltage input under constant rotor speed Electrical Transient

Flux to Current Lookup - Inversed Maxwell Result Electrical Transient Display Voltage = 30 V (Steady State), Frequency = 20 Hz. (300 rpm). Phase Resistance = 0.069 Ohm.NO Mechanical Dynamic

- Simulink result is compared with Maxwell result. The results are very close.
- Motor phase resistance is considered.

Simulink Result

Maxwell Result

Voltage input with mechanical dynamic Mechanical & Electrical Transient

Flux to Current Lookup - Inversed Maxwell Result Mechanical Transient Display Voltage = 50, Frequency = 20 Hz (300rpm Steady State), Load Torque = 250Nm, Rotor Inertia = 0.054 Phase Resistance = 0.069 Ohm

- Simulink result is compared with Maxwell result. The results are very close.
- Mechanical dynamic is considered.

Simulink Result

Maxwell Result

Key Takeaways:

- ANSYS Maxwell can perform sweeping and generate raw machine data.
- Raw machine data can be processed and brought into Simulink for high fidelity machine modeling.
- High fidelity machine model is an accurate representation of the actual machine and it runs really fast in Simulink.

