

Enterprise Infrastructure for Model-Based Design

Good to Great

Dave Hoadley, PhD 9 May 2017

Opportunities of Enterprise-level Model-Based Design

- Enabling scalability
 - Inter-team collaboration
 - Multi-component simulation
- Empowering reuse
 - Designing for reuse
 - Publishing
- Expanding simulations and analysis
 - Parallel
 - Distributed

Agenda

Managing Model-Based Design for Scalability

- Key to scalability is careful management
 - Model reference
 - Interface definition (buses, ARXML import)
 - Simulink Data Dictionaries
 - Simulink Projects
 - Configuration Management integration

Simulink Projects for teams: Collaborate, automate, integrate

- Find and group files
- Standardize tasks
- Promote commonality with templates
- Label items for workflow support
- Share with SCM tools
- Project referencing for scalability

Source Control Management example: Git

- Common SCM features
 - Shared location
 - All versions stored
 - Branches, labels, tags
- Git difference
 - Designed for distributed development
 - Favors branch & merge over fetch/lock/update
- For models, data dictionaries, .mat files this is tricky

Scalable component management strategy

Align logical views of the system

Simulink Projects

Model components

Git modules

Data

Integration

Git submodule referencing

Managing for reuse

Challenges to reuse

Trust

Location
Clarity
Simulink Projects, design templates, SCM integration
Status
Awareness
Interoperability
??

Can we go further for sharing than just SCM?

Challenge of discovery

- Discovering what?
 - Your own apps
 - Engineering data
 - Models
 - Automation tools
 - Templates
- MATLAB Minimart add-on
 - Package and publish
 - Download and install
 - Versioning
 - Compatibility

Socializing this idea → MATLAB App Store

- Search/filter
- Scope
- Approval workflow
- Component interdependencies
- Ownership
- Download tracking
- Notifications
- User ratings
- Comments
- Recommendations

You might also like ...

MATLAB Store at Jaguar Land Rover

- After 18 months
 - 100 internally authored apps and toolboxes
 - downloaded 6000 times
 - almost 1000 users
- Reduce duplication
- Encourage and recognize sharing
- Engineering productivity increased

Challenge of growth of simulations and analysis

- Scope
 - component subsystem vehicle fleet
- Types of tasks
 - Design of experiments
 - Controller/system optimization
 - Parameter sensitivity analysis
 - Training machine learning algorithms
 - System validation

	Track 3: Powertrain	
tics	Five Cool Things You Can Do with Powertrain Blockset Mike Sasena, MathWorks	
ith	Deriving a Fast and Accurate PMSM Meter Model from Finite Element Analysis Dakai Hu, MathWorks and Haiwei Cai, ANSYS, Inc.	
d	Engine Model Development and Calibration Optimization Using Powertrain Blockset Brad Hieb and Scott Furry, MathWorks	

MathWorks solutions

- Parallel Computing Toolbox
 - Multiprocessor/Multicore
 - GPU
- MATLAB Distributed Computing Server

	Track 1: Automated Driving	Track 2: Data Analytics
2:30 p.m.	Introduction to Automated Driving System Toolbox Mark Corless, MathWorks	What's New in MATLAB for Engineering Data Analytics Will Wilson, MathWorks
3:05 p.m.	Deep Learning: New Tools for Algorithm Design and Validation Arvind Jayaraman, MathWorks	Building a Digital Twin of Your Vehicle Powertrain with MATLAB and Simulink Arvind Hosagrahara, MathWorks
3:40 p.m.	Case Study: Vision and Radar-Based Sensor Fusion Seo-Wook Park, MathWorks	Developing Prognostics Algorithms: Data-Based and Model-Based Approaches Seth DeLand, MathWorks

Conclusion

- Optimize your adoption for enterprise
 - Scalability
 - Sharing
 - Speed

Tackling all will lead to a world-class state

For further information

Large scale modeling

https://www.mathworks.com/help/simulink/large-scale-modeling.html

Git integration

https://www.mathworks.com/help/simulink/examples/using-a-simulink-project-with-git.html

Jaguar Land Rover User Story

https://www.mathworks.com/company/user_stories/jaguar-land-rover-standardizes-on-matlab-for-developing-packaging-and-sharing-engineering-tools.html

MATLAB Distributed Computing Server

https://www.mathworks.com/products/distriben.html

Amazon EC2 early adopter program

https://www.mathworks.com/campaigns/products/offer/mdcs-cloud.html