

USING MODEL-BASED DESIGN FOR VEHICLE DYNAMIC SIMULATION

Sid Attravanam Bennett Norley Cooper Tire & Rubber Company

Project Background

- Cooper Tire & Rubber Company
 - Sid Attravanam Manager, Tire & Vehicle Dynamics
 - Bennett Norley Engineer, Tire & Vehicle Dynamics
- **GOAL:** Reliably simulate on-track, vehicle maneuvers
 - Reduce product development cost and cycle time
 - Increase testing efficiency at our test track
 - Establish a predictive link between tire and vehicle test data

Is absolute magnitude the holy grail of simulation?

Absolute Magnitude Only

Including Rank Order

< 5% simulated error</p>

- Predicts the incorrect rank order
- < 10% simulated error
- Predicts the correct rank order
- Different simulated error (delta) for each tire

Including Delta

- <10% simulated error
- Predicts the correct rank order
- Same simulated error (delta) for each tire

Prioritizing Rank Order

- Optimize ROIC for reliable simulation
 - "Chasing the last 5%" can be expensive and exhausting
 - Prioritize rank order, delta, and absolute magnitude
 - Accept slightly higher simulation error
 - For more reliable rank order
 - For more repeatable delta

Rank Order > Delta > Absolute Magnitude

Simulation Flow Chart

6

- Issues developing a robust vehicle model
 - Rapid vehicle turnover in the replacement market
 - Need to continually characterize several vehicles
 - Unable to access OEM-specific subcomponent-level data
- Will require significant technical resources
- We need a simulation that gives us:
 - Visibility in the underlying models (not a black box system)
 - Easy-to-tune parameters (for sensitivity analyses)

MathWorks Collaboration

Technical collaboration will greatly reduce development time

MathWorks will Provide

- Technical Support
- Software Licenses
 - Vehicle Dynamics Blockset
 - Powertrain Blockset
 - Model-Based Calibration Toolbox
 - Simulink Design Optimization
 - Much More

Cooper will Provide

- Testing data
- Tire and vehicle dynamics consultation
- Simulation validation

Vehicle Model

Vehicle Model Overview

- MathWorks' Passenger Vehicle Model
 - 14 Degree of Freedom Model
 - Vectorized Tire Models
 - Customizable Suspension Kinematics
 - Integrated Friction and Scaling Effects
 - Ideal Mapped Engine Calibration
 - Tunable Steering, Transmission, Driveline, and Brake Models
- Parameterizing the Model
 - Cooper's internal suite of testing
 - 4-Post Shaker Rig Testing
 - Kinematic and Compliance Testing
 - Moment of Inertia Testing

Model-Based Calibration Toolbox

Tire Model

Tire Model Overview

- Tire Force and Moment (F&M) Testing
 - Measuring competitor tires
 - Larger presumed difference in data
 - Highlighting longitudinal properties of the tire
- Collecting wheel force transducer and tire temperature data
 - Use with on-track results for surface normalization
- Modeled with Pacejka Magic Formula 6.2 Tire Model
- Imported into simulation via *.TIR files

Tire Model Example

Longitudinal Force [Fx] vs. Slip Ratio

Slip Ratio

Example of Longitudinal Force vs. Slip Ratio Tire Model

Running the Simulation

Running the Simulation Overview

- Input
 - Tire Model fit from tire force and moment data
 - System Input Model driver commands from Cooper braking test
 - Vehicle Model fit from K&C, Moment of Inertia, 4-post Shaker Rig data
- Output
 - Vehicle response under braking
 - Tire response under braking
- Simulation Validation
 - Validated against real world braking data
 - Used Wheel Force Transducers for surface normalization

Initial Simulation Results – Braking Distances

Error bars represent: 2x Standard Error

Initial Simulation Results – Vehicle Response: VELOCITY

Initial Simulation Results – Vehicle Response: LONGITUDINAL ACCELERATION

Error bars represent: 95% Confidence Interval of Track Data

Initial Simulation Results – Tire Response: LONGITUDINAL FORCE

Initial Simulation Results – Tire Response: NORMAL FORCE

Error bars represent: 95% Confidence Interval of Track Data

Initial Simulation Results – Tire Response: WHEEL SPEED

Initial Simulation Results – Tire Response: SLIP RATIO

Error bars represent: 95% Confidence Interval of Track Data

22

Tuning the Vehicle Model

Iterative and Ongoing

Macro-Level Model Tuning

- Ensuring underlying physics are sound e.g. Damper Curve Fitting
- Checking interactions between tires and vehicles
 e.g. Vehicle and Tire Model Coordinate Frames

• Validating mathematical equations e.g. Toe angle and Weight Distribution

Micro-Level Model Tuning

• Populating individual system parameters e.g. Brake Pad Parameters, Tire Scaling Factors

• Using the Simulink Design Optimization Toolbox e.g. Parameter Estimation and Sensitivity Analysis

Going Forward

- Continue Micro-Level Tuning
 - Sensitivity Analysis on input parameters
 - Are they relevant?
 - Estimate parameters that are not easily measured
- Determine error band for simulated values
 - How does the error compound in the simulation?
- More measured data validation
 - Varying braking and ambient conditions
- Expand to additional test maneuvers
 - Lateral, open-loop maneuvers

- **GOAL:** Reliably simulate on-track, vehicle maneuvers
 - Reduce product development cost and cycle time
 - Increase testing efficiency at our test track
 - Establish a predictive link between tire and vehicle test data

THANK YOU Questions?