Our theme today:
Evolution

Simulab
1990

Stateflow
RTW
Simulink
Simscape
Coder
V&V

Billion years ago
The Three Evolutionary Forces at Play

1. Simulation Scale

2. Design Complexity

3. Collaborative Engineering
Evolving for **Simulation Scale**

BRAIN SIZE AND NEURON COUNT
Cerebral cortex mass and neuron count for various mammals.

<table>
<thead>
<tr>
<th></th>
<th>Copybara</th>
<th>Rhesus Macaque</th>
<th>Western Gorilla</th>
<th>Human</th>
<th>African Bush Elephant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (g)</td>
<td>48.2 g</td>
<td>69.8 g</td>
<td>377 g</td>
<td>1232 g</td>
<td>2648 g</td>
</tr>
<tr>
<td>Neuron Count</td>
<td>0.3 billion</td>
<td>1.71 billion</td>
<td>9.1 billion</td>
<td>16.3 billion</td>
<td>5.59 billion</td>
</tr>
</tbody>
</table>

Trend: Demand for scaled up simulation capabilities

Full Vehicle Simulation
Strategy: Continuously evolve Simulink to be a best in class Simulation Integration Platform

- Simscape
- Windows
- Linux
- 3rd party tool
- 3rd party tool
- MATLAB
- Deep Learning NN
- S-Function
- Hand C/C++ Code
The primary challenges for simulation scale

- Integration
- Performance
- Operationalization
Integration of algorithms with multiple simulation interfaces is key
For Models, core modularity principles underpin integration

Data Encapsulation

Interface Management

[Diagrams and text related to interface management, data encapsulation, common types, constants, etc.]
You can easily bring C/C++ code into Simulink

```c
void function_name() {
    ... ...
    ... ...
}
```

Basic

Advanced

- C Caller
- C Function
- S-Function Builder
- S-Function
You can use MATLAB algorithms like the Deep Learning Toolbox in Simulink.

```matlab
obj.DLModel = coder.loadDeepLearningNetwork('mydnn.mat', 'network')
```

Deep Learning Toolbox
Simulink has simulation interfaces to 190 connection partner products and services primarily through the S-Function interface.
Using FMUs inside Simulink is easy and expressive
System-level simulations are computationally expensive

- Integrating models and components
- Simulation Performance
- Maximize single thread performance
- Exploit parallelism
- Operationalization
- Enable massive simulation runs
Maximizing performance by discovering speed-up opportunities: Performance Advisor

- Consolidated advice on performance
- Gives advice that works!
- Helps discover performance focused capabilities
Invest in multiple parallelization techniques for boosting performance

Model block, S-function, FMU import

ForEach Subsystem Parallelization
MATLAB Function GPU acceleration
Compute Clusters

Dataflow SIMD

Thread 1 ↔ Thread 2 ↔ Thread 3

4xSIMD

4xSIMD

4xSIMD

Controller

Environment

Vehicle

Sensors

Fcn

FUTURE
RELEASE

MATLAB Function
GPU acceleration

R2018a
Design envelope studies require a large number of simulations.

Full vehicle model

100 drive cycles × 10 vehicle loadings × 10 weather conditions

100,000 simulations

Optimize gear ratios

Driving cycle
Simulink enables massive simulation workflows

Setup

Simulate

Analyze

Simulation Manager

Simulink Manager

parsim

batchsim
Extend simulations to Operational phases of the system

- Integrating models and components
- Simulation Performance
- Operationalization

Enable simulation deployment
Simulink Compiler enables deployment of simulations

Simulink Compiler

R2020a

Integrate as Enterprise Application

Web App
Trend: Demand for simulating complex scenarios with multiple actors is increasing

Scenario Simulations for Autonomy
Strategy: Create a platform for system-of-systems (scenario) simulations

Cuboid Driving Simulation

Unreal Engine Driving Simulation

RoadRunner
Simulink platform is evolving to meet the demands of scaled up simulations.

Full Vehicle Simulation

Scenario Simulations for Autonomy

Integrating models and components

Simulation Performance

Operationalization

Scenario Simulation
Evolving for **Design Complexity**

https://en.wikipedia.org/wiki/Tiktaalik
Trend: Some rumblings in the force

MAB Breakout session 2012 on System Architecture

“Not sure you get it…”

Wonder what’s for lunch?
Stakeholder Needs

Descriptive Architectures

Implementations

Customer quote:
“We have tried to build the architecture model in SysML and connect it to the design in Simulink … … does not work without rework both in the architecture and design worlds whenever a change is needed. It is broken and we need a more integrated approach”
Survey @ Modeling System Architecture Breakout
Newton MAB - 2018

Are you happy with your current tool choices for Modeling System Architecture?

- Happy: 8%
- Meh: 48%
- Sad: 44%
More specifically, what are the pains? “We do not like our current System Architecture solution because they are:”

Newton MAB Survey 2019

- Not Executable
- Not synchronized with designs
- Hard to use
- Not analyzeable

Percentage %
Strategy: Build an MBSE Ecosystem that fits with MBD

Be Intuitive
Facilitate Analysis
Tackle Complexity
Enable Implementation

System Composer
MATLAB
Simulink

Requirements Coverage Reporting and Impact Analysis

Simulink Requirements
“Sketch” system interfaces and elaborate incrementally
Extend elements with your own custom metadata using Profiles & Stereotypes
Analyze system characteristics and quantitatively evaluate choices using MATLAB.
Trace to system requirements
Refine requirements alongside the architecture
Link design models to components and ensure consistent interfaces
Simplify the complex with Filters and autogenerated Views

VIEW BROWSER

- Electrical View
- Basic Elements View
- Motors View

Stereotype isa ElectricalComponent
Simplify the complex with Filters and autogenerated Views

Stereotype isa ElectricalComponent
And we are only getting started. Coming soon:

• Behavior modeling using Sequence Diagrams

• Architecture Allocations though Analysis (e.g. Logical to Physical)

• Software Architecture Modeling
 • Link to AUTOSAR (R2019b)
 • Other middlewares such as DDS

• And much more!
Evolving for **Collaborative Engineering**

https://en.wikipedia.org/wiki/Symbiogenesis
Trend: An increased demand for Agile team-based workflows

- Shared team environment
- Collaboration
- Continuous Integration & Test

- Jenkins

Run

Simulate
Strategy: Continued investments to facilitate Continuous Integration as a critical lynch-pin in Agile workflows
Can I do CI today in Simulink?

Yes, let's consider an example from *R2019b*.
Lane Following Assist Example

Simulink Check Checks

SIL Code Generation

SIL Testing Simulink Test
How Does It All Fit Together?

- Simulink Check Checks
- Generate Controller Code
- Execute Tests in Simulink Test

Development

Merge

Review

Develop

Test

Submit

Developers & Test Authors
1. Trigger
1. Trigger

Continuous Integration

Running LaneFollowingModelAdvisorChecks
Done LaneFollowingModelAdvisorCheck

Simulink Check
1. Trigger

Simulink Check

Running LaneFollowingModelAdvisorChecks
 Done LaneFollowingModelAdvisorCheck

Code Generation

Caching model source code
..
..
Writing header file rtGetNaN.h
Writing source file rtGetNaN.cpp
Writing header file rt_defines.h
Writing header file rt_nonfinite.h
Writing source file rt_nonfinite.cpp
Failure Summary:

<table>
<thead>
<tr>
<th>Name</th>
<th>Failed</th>
<th>Incomplete</th>
<th>Reason(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaneFollowingTestScenarios > Scenarios/LFACC_Curve_CutInOut_TooClose</td>
<td>X</td>
<td></td>
<td>Failed by verification.</td>
</tr>
</tbody>
</table>

ERROR: MATLAB error Exit Status: 0x00000001
Build step 'Run MATLAB Tests' changed build result to FAILURE
Finished: FAILURE
3. Reproduce

- Continuous Integration
- Test
 - Reproduce Locally
 - Build
 - Development
- Developers & Test Authors

- Trigger
- Verify
4. Fix Locally

Global Assessments
% Ensure that the time gap between the ego vehicle and lead vehicle does not dip below
% 1.5s for more than 2s at a time.
verify(duration(time_gap < 1.5, sec) < 2);

% Verify that no collision was detected
verify(!collision);

% Verify that the absolute value of lateral deviation from the lane centerline does not exceed 0.2m
% for more than 5s at a time.
verify(duration(abs(lateral_deviation) > 0.2, sec) < 5);

Global Assessments
% Ensure that the time gap between the ego vehicle and lead vehicle does not dip below
% 0.8s for more than 5s at a time.
verify(duration(time_gap < 0.8, sec) < 6);

% Verify that no collision was detected
verify(!collision);

% Verify that the absolute value of lateral deviation from the lane centerline does not exceed 0.2m
% for more than 5s at a time.
verify(duration(abs(lateral_deviation) > 0.2, sec) < 5);
5. Test Locally

Developers & Test Authors

Trigger

Verify

Build

Development

Test

Reproduce Locally

Continuous Integration

Verify Statements

Test Assessments/GlobalAssessments verify/boundarytime_gap < 0.5, sec < 5

Test Browser
6. Merge
6. Review

- Reproduce Locally
- Develop
- Test
- Merge
- Build
- Continuous Integration
- Developers & Test Authors
- Trigger
- Verify

GlobalAssessments

- `labelString : GlobalAssessments`
 - % Ensure that the time gap between the ego vehicle and lead vehicle does not dip below 1.5s for more than 2s at a time.
 - `verify(duration(time_gap < 0.8, sec) < 2)`
 - % Verify that no collision was detected
 - `verify(~collision)`

GlobalAssessments

- `labelString : GlobalAssessments`
 - % Ensure that the time gap between the ego vehicle and lead vehicle does not dip below 1.5s for more than 5s at a time.
 - `verify(duration(time_gap < 0.8, sec) < 5)`
 - % Verify that no collision was detected
 - `verify(~collision)`
7. Commit

Continuous Integration

Build

Test

Develop

Development

Mere

Test

Review

Verify

Locally

Reproduce

Submit

Version Control

Developers & Test Authors

Commit

SOURCE CONTROL

Commit

Fetch

Remote

Submodules

Push

Branches

Stashes

Pull

Update Safe Distance assessment criteria to pass if the time gap does not dip below 0.8s for more than 5 seconds at a time.

Submit

Cancel
8. Verify, Build, Test

Finished: SUCCESS
Continuous Integration Success is within your reach

Tooling

1. Jenkins Plugin
2. MATLAB Unit
3. Simulink Test

Documentation

1. Technical Article
2. Documentation Hub
3. Solutions Page

Future

1. Pipeline
2. Server Workflows
3. Test Results Online
4. Dashboards
Let's go back to the broad forces that shape our platform evolution

1. Simulation Scale

YOU!

3. Collaborative Engineering
Q&A

Please contact us with questions
mani@mathworks.com