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MATLAB EXIPO

Key takeaways

Hardware-in-the Loop (HIL) testing and system-level
simulation for high-fidelity models.

Enable

Explore Various ROM technigues in MATLAB to find the best method.
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Common Challenges

f\""\ High fidelity models, such as ones from 3" party FEA tools, are too slow
for system level simulation and HIL testing.

AIA Creating a ROM that produces desired results in terms of speed,
L~ accuracy, interpretability, etc.
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Reduced Order Modeling

High-fidelity model

What

= Techniques to reduce the computational
complexity of a computer model

= Provide reduced, but acceptable fidelity

Why

Simulation time
High-fidelity model | l|  10%

= Enable simulation of FEA models in Simulink Reduced-Order Model (ROM)

= Perform hardware-in-the-loop testing ]

h

= Develop virtual sensors, Digital twins — _ [ %J Tl N5
= Perform control design DWGCWESOUEJ‘ (% ) & ||

= Enable desktop simulations for orders-of-
magnitude longer timescales

Controllers
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Reduced Order Modeling techniques
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Example overview
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Generate synthetic data for training

Data Preparation

Perform Design of Experiments (DoE) and generate
synthetic data from Simulink model

Copyright 2015-2022 The Math

Wiorks,

Inc

EngTrqReq EngSpdR... SpkAdvOfst
1 60 2000 -30
2 128 2500 15
3 94 2750 8
4 m 2875 -19
5 7 2625 -1
6 144 2125 4
7 85 2563 =21
8 119 3313 -28
8 68 2938 21

Vary model

I Inputs

Log data

Run

simulation
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Al techniques that are suited for modeling dynamic systems

Al Modeling

Neural State Space /

Neural ODE

— LSTM
Al-Based (Data-
Driven) ROM Nonlinear ARX

models

- etc.

MATLAB BEXIPPO
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Create deep-learning based nonlinear state-space models
without having to be a deep learning expert

Al Modeling

x = f(x,u) State Network (f)
{y =g(x,u) =

Output Network (g)

Neural state-space model

MATLAB EXPC
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Search Documentation pm

G HalJ » C: » Nonlinear System Identification » NonlinearSystemldentification 7
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Webinar_Neural_state_space_demo1.mlx +
Training Neural State Space Models
This example shows how to train and evaluate Neural State Space to model the behaviour of a vehicle engine.
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Capture time dependencies In time-series data using LSTM

Al Modeling
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Include insights and knowledge of physics of your system using

Nonlinear ARX Models

QOutput Function

/h,ba t S m
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Function

Extend linear models and model nonlinear behavior
using flexible nonlinear functions
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Linear
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Design and run experiments to train and compare your Al models

with Experiment Manager

Al Modeling

MATLAB EXPP

4

E Mode
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Manage Al tradeoffs for your system .}S i.?\

LSTM Neural SS NLARX SVM
Long Short-Term Memory Neural State Space Nonlinear ARX Support Vector
Network (Neural ODE) Machine (SVM)
Training Speed L ®
SRR
( Inference Speed\ O O
Model Size O @,
Accuracy (RMSE) O O
g / —

Results are specific to Vehicle Engine ROM example

Better ‘ Okay Worse ‘

* @ if trained using a GPU. Testing made with GPU NVIDIA A100
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System-level simulation

Simulation & Test

Integration of trained Al model into Simulink System-level simulation
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Hardware-in-the-loop simulation

MATLAB EXPC

Deployment
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Hardware-in-the-loop simulation £\ \
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Use ROMs outside of Simulink, for development and operation
stages

Development Operations
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Renault Uses Deep Learning Networks to Estimate

NO, Emissions

Challenge

Design, simulate, and improve aftertreatment
systems to reduce oxides of nitrogen (NO,)
emissions

Solution

Use MATLAB and Deep Learning Toolbox to model
engine-out NO, emissions using a long short-term
memory (LSTM) network

Results

= NO, emissions predicted with close to 90%
accuracy

= LSTM network incorporated into after
treatment simulation model

= Code generated directly from network for ECU
deployment

Link to article

—Real data
—LSTM

Py

100 200 300 400 500 600 700 800 900 1000
Time[s]

Measured NOy emissions from an actual engine and modeled
NO, emissions from the LSTM network.

“Even though we are not specialists in deep learning, using
MATLAB and Deep Learning Toolbox we were able to create
and train a network that predicts NO, emissions with almost
90% accuracy.”

- Nicoleta-Alexandra Stroe, Renault

21


https://www.mathworks.com/company/newsletters/articles/using-deep-learning-networks-to-estimate-nox-emissions.html
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Key takeaways

Hardware-in-the Loop (HIL) testing and system-level
simulation for high-fidelity models.

Enable

Explore Various ROM technigues in MATLAB to find the best method.
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Thank you
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