
1© 2016 The MathWorks, Inc.

Latest Features in Robotics System Toolbox

March 2016



2

Monte Carlo Localization Algorithm

 Estimate pose (location and orientation) of a 

differential drive robot in a known 

environment using sensor data

 Provide BinaryOccupancyGrid object of your 

map and range sensor data from the robot to 

the robotics.MonteCarloLocalization object

 Use global localization or specify an initial 

pose to improve performance

Estimate robot location in a known map

» edit TurtleBotMonteCarloLocalizationExample

Converged Distribution 

- Localized Robot

Initial Distribution -

Unknown Robot Position

>> mcl = robotics.MonteCarloLocalization

>> [~, pose] = step(mcl, odom, ranges, angles)



3

Particle Filter Algorithm

 Estimate state for arbitrary non-linear 

systems and non-Gaussian noise 

distributions

 Apply particle filter to diverse applications 

such as robot pose estimation, object 

tracking, and sensor fusion

 Customize your particle filter by giving a 

state transition function and measurement 

likelihood model to match your system

Estimate state for nonlinear systems

» ParticleFilterExample

>> pf = robotics.ParticleFilter

>> predict(pf)
>> correct(pf, [0 0 pi])

Video Object Tracking

Robot Pose Estimation



4

Fixed-Rate Execution

 Execute loops at a constant rate based off 

either the system time or ROS time

– Compensates for any user code to maintain the 

rate

– Ensures that loops are run at a fixed rate when 

accurate timing of commands is required

 Collect statistics about the timing of 

loop iterations

 Use published simulation time when connected 

to a ROS network

– Publish messages and control commands at a 

fixed rate to a ROS-enabled system

Run MATLAB code at a constant rate

r = robotics.Rate(5);

% Run loop at 5 Hz

while(1)
runUserCode();
waitfor(r);

end

0.2 𝑠 0.2 𝑠

Control

Loop (5 Hz)

0.2 𝑠

time



5

Robotics System Toolbox Support Package for 

TurtleBot Based Robots

 Acquire sensor data from TurtleBot based 

robots without explicitly calling ROS 

commands

– Use the data for visualization and analysis, 

and send commands to control the robots

 Communicate with either simulated or 

physical robots

Connect to TurtleBot hardware

» TurtleBotSPGetStartedExample

>> tbot = turtlebot('192.168.2.100')

>> odom = getOdometry(tbot)
>> setVelocity(tbot, 0.2)

Communicate with a 

Physical or Simulated 

TurtleBot Robot

Visualize Sensor Data



6

String Support for ROS Parameters in Simulink

 Get ROS parameters that are strings and 

use them in your Simulink model

 Set ROS parameters that are strings

 When using strings, they must be cast as a 

uint8 array of ASCII values

Support for using strings as ROS 

parameters

>> robotlib



7

String Array Support for ROS Messages in Simulink

 Use an array of strings when using the 

Publish, Subscribe, and Blank Message 

blocks to create, send, and receive 

messages using a ROS network in Simulink.

 The size of variable-size arrays can be 

viewed and edited

– Tools > Robot Operating System > Manage 

Array Sizes

Support for using string arrays as ROS 

messages

» robotROSMessageUsageExample



8

Code Generation from Simulink Using Simulink Coder

 Generate standalone ROS nodes from 

Simulink models with just MATLAB Coder 

and Simulink Coder

 Embedded Coder can optionally be used to 

customize the generated code

Generate standalone ROS nodes with 

Simulink Coder

» robotROSCodeGenerationExample

C++ code for 

standalone 

ROS node


