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ABSTRACT 

This article presents a methodology to apply Model-
Based Design to develop and automatically optimize 
vehicle stability control systems. Such systems are 
employed to improve the dynamic rollover stability of 
Sport Utility Vehicles (SUVs). A non-linear vehicle 
model, representative of a midsize SUV, was built in 
CarSim®. This vehicle model is used in Simulink® to 
design a control system that reduces the risk of rollover. 
Optimization methods are then used to automatically 
adjust controller parameters to meet the system 
specifications that ensure the stability of the vehicle. 
Cosimulation between the two software packages 
enables rapid design and verification of control 
algorithms in a virtual environment. The results of the 
simulation experiments can be visualized through a 3-D 
animation of vehicle motion. The control system is 
adapted for the specific vehicle model, enabling it to 
remain stable under standard test conditions. The 
National Highway Traffic Safety Administrations' 
(NHTSA) fishhook maneuver was used to estimate 
dynamic rollover stability of the vehicle and benchmark 
the performance of the SUV both with and without the 
optimized controller. 

INTRODUCTION 

According to NHTSA's National Center for Statistics and 
Analysis, from 1991 to 2001 the number of passenger 
vehicle occupants killed in all motor vehicle crashes 
increased 4 percent, while fatalities in rollover crashes 
increased 10 percent.  In the same decade passenger 
car occupant fatalities in rollovers declined 15 percent 
while rollover fatalities in light trucks increased 43 
percent. In 2001, 10,138 people died in rollover crashes, 
a figure that represents 32 percent of occupant fatalities 
for the year. Of those, 8,407 were killed in single-vehicle 
rollover crashes.  The U.S. Fatality Analysis Reporting 
System shows that 54 percent of light vehicle occupant 
fatalities in single-vehicle crashes involved a rollover 
event [1]. In response to these trends, NHTSA has been 
evaluating rollover testing since 1993. The estimated 
risk of rollover differs by light vehicle type: 10 percent of 
cars and 10 percent of vans in police-reported single-

vehicle crashes rolled over compared to 18 percent of 
pickup trucks and 27 percent of SUVs. This is because 
SUVs and similar vehicles with a higher ground 
clearance usually have a high center of gravity, and 
consequently a lower Static Stability Factor (SSF), as 
compared to a sedan or a sports car. As a result, the 
vehicle is more likely to rollover, as explained in books 
on vehicle dynamics [2]. 

Modern SUVs come with a wide range of onboard 
electronics for a variety of controls, ranging from engine 
and drive-train control to chassis and body electronics 
controls. Among these controls, Electronic Stability 
Control (ESC) systems, also known as Vehicle Stability 
Control (VSC) systems, are typically integrated into the 
vehicle as part of the onboard active safety system. In 
recent years traditional traction and brake control 
systems have been redesigned to incorporate anti-
rollover capabilities. These controllers help reduce the 
risk of a vehicle entering an undesired state, such as a 
rollover, where the vehicle is not under the complete 
control of the driver. One of the methods of reducing the 
risk of rollover is to implement differential braking 
controller logic in the Electronic Stability Controller that 
prevents the vehicle from entering high rate of turn 
maneuvers with a high velocity [3][4][5][6]. In the U.S., 
federal standards require all vehicles after the 2011 
model year to have ESC logic built in [7]. Designing and 
testing these control systems in real vehicles on a track 
can be dangerous, and expensive. Ensuring test 
conditions are consistent from test to test can also be a 
significant challenge. 

The design and testing of control systems using Model-
Based Design accelerates the development process by 
reducing the need for track testing, which is normally 
much more expensive and time-consuming than 
simulation. In addressing the rollover problem, 
simulation can be used to study the vehicle response to 
various steering maneuvers. These test simulations can 
be repeated while varying parameters such as road 
surfaces, tire models, and vehicle properties. Tests in 
simulation also eliminate the variability introduced by 
human-in-the-loop testing. 



The following sections describe the development of a 
nonlinear vehicle model to study the rollover 
phenomenon in a vehicle representative of a standard 
SUV. Methods are presented for designing state 
estimators for parameters that are difficult or impossible 
to measure, designing an ESC system for the SUV 
configuration, and optimization of controller parameters 
based on design requirements. In addition, the 
effectiveness of the optimized controller to prevent 
rollover is verified visually and graphically. 

DESCRIPTION OF THE VEHICLE MODEL  

The vehicle studied in this paper is representative of a 
midsize SUV. The vehicle model is available in the 
commercial off-the-shelf vehicle dynamics simulation 
tool, CarSim, and the vehicle’s performance has been 
verified against test data [18]. This model is suitable for 
simulating vehicle response under significant roll 
motions, which is necessary to simulate vehicle rollover 
under standard test maneuvers. The model is similar to 
that used by other authors in studies of vehicle rollover 
[6][8]. The vehicle modeled consists of dual independent 
front suspensions and a solid rear axle that supports the 
sprung mass. The nonlinear mathematical model has 6 
degrees-of-freedom for the sprung mass, 2 degrees-of-
freedom for each of the axles, and 1 degree-of-freedom 
for each of the wheels. The steering system and braking 
system add additional degrees of freedom. This high-
fidelity vehicle model can be customized based on 
different vehicle parameters, as well as road and 
environmental conditions. 

 

Figure 1: Setting up the vehicle parameters using the 
CarSim user interface. 

Figure 1 shows the physical vehicle parameters used to 
build up the vehicle model. These parameters can be 
modified separately from the controller parameters to 
test the behavior of the controller under different vehicle 
conditions such as single occupant, multi-occupant, and 
high center of gravity, among others. The vehicle model 
used for this paper applies steering inputs concordant 
with the NHTSA fishhook maneuver. The throttle and 

brake inputs are in accordance with the test conditions 
described in the next section. 

The vehicle simulation model also includes an ESC 
algorithm. The model of the controller and the control 
logic is discussed in the following sections. 

Figure 2 shows the steering wheel angle inputs to the 
vehicle that implements the standard NHTSA fishhook 
maneuver. To begin the maneuver, the vehicle is driven 
in a straight line at a speed slightly greater than the 
desired entrance speed.  The driver releases the throttle, 
and when at the target speed, initiates the steering 
wheel commands shown in figure 2. Vehicles that have 
a propensity to rollover are fitted with outriggers to 
prevent an actual rollover in the test condition. 

 

Figure 2: The steering inputs used to implement the 
fishhook maneuver test in the simulations [1]. 

DESIGN OF STATE ESTIMATORS AND 
CONTROL SYSTEM 

Numerous ESC concepts have been presented by 
several authors [3][4][5][6] and still more proprietary 
algorithms are implemented by automotive 
manufacturers. The goal of the ESC implemented in this 
paper is to control the vehicle’s body roll and yaw rate, 
while minimizing the loss of vehicle speed to electronic 
braking as automatically applied by the controller. The 
vehicle roll and yaw motion is controlled by applying a 
braking force to prevent unsafe levels of body roll and 
yaw motion in response to driver inputs in a dynamic 
steering maneuver. Excessive loss of speed due to ESC 
operation could make the vehicle seem unresponsive to 
throttle inputs and the optimal controller should minimize 
the braking inputs while keeping the vehicle within a safe 
operating envelope. The steering and braking 
commands are inputs that influence vehicle motions. 

By design, the ESC implemented switches between 
three control modes. The control modes are activated 
based on three potential causes of the vehicle entering a 
state of wheel slip: loss of traction, excessive roll, or 
excessive yaw. The mode switching logic shown in 
Figure 3 is implemented in Stateflow®. 



This structure of the controller is well suited to the 
application of optimization-based methods, available in 
the Simulink® Response Optimization™, which are used 
to adapt two proportional-integral-derivative (PID) 
controllers that are switched based on the measured 
and estimated signals. Iterative manual tuning would be 
a difficult task given the number of parameters, the 
switched nature of the control logic, and the range of 
values to vary. A physical test of this sort of algorithm on 
a test mule would require a significant time investment to 
test all controller parameters and it would raise safety 
concerns for the test driver. 

 

 

Figure 3: Block diagram describing switched mode 
ESC. 

The cosimulation environment consists of the CarSim S-
function that implements the vehicle dynamics with the 
state estimators and controller logic designed and 
implemented in Simulink. The numerical model provides 
outputs that represent the physically measurable 
variables in a vehicle. The numerical simulation also 
enables us to determine which vehicle states and 
variables are difficult, if not impossible, to measure on 
an actual vehicle.  

In this model, we have access to wheel speeds, brake 
pressures, body roll, yaw rates, and slip rates. Some 
states of the vehicle are estimated based on available 
sensor data just as they would be in an actual vehicle 
controller.  

The vehicle speed is estimated based on the averaged 
wheel speeds of the un-braked wheels. A low pass filter 
is used to simulate the effect of vehicle inertia on the 
measured wheel speeds and prevent instantaneous 
values of the vehicle speed being undefined in the 
estimator when brake pressures are applied to each of 
the four wheel brakes. The following transfer function 
relates vehicle speed to independent wheel speeds: 
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Body slip rate is another parameter that is difficult to 
directly measure without the use of expensive sensors. 
This model estimates body slip rate based on the 
following equations assuming a neutral steer vehicle 
configuration: 

Body slip rate = Measured yaw rate – Stable yaw  

Stable yaw = Lateral acceleration/Vehicle speed  

The body roll angle is estimated based on the transfer 
function relating the lateral acceleration to the body roll 
angle. The transfer function, shown below, is a function 
of known and estimated vehicle parameters including 
inertia, equivalent roll stiffness, and equivalent roll 
damping. 
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Coefficients I, C and K1 represent the roll inertia, roll 
damping and roll stiffness of the vehicle, respectively, 
and K2 is an estimated parameter that is proportional to 
the height of the vehicle roll center. This transfer function 
is valid for the cases when the body roll angle is within 
specified design limits. By ensuring that the optimization 
algorithm heavily penalizes the controller for estimated 
body roll angles that exceed the design limits, we can 
show that estimation algorithms for accurately predicting 
the body roll angle outside of the design range are not 
needed. This substantially simplifies the algorithm for 
body roll angle estimation in normal vehicle operating 
conditions. 

AUTOMATED CONTROLLER PARAMETER 
SELECTION USING GENERIC OPTIMIZATION 
METHODS 

After the controller structure is specified, the next task is 
tuning the controller gains to meet design requirements. 
Without software tools to automate this manual process, 
engineers will typically need to rely on knowledge from 
past vehicle programs or spend many hours trying to 
tweak the parameter values for the PID controller based 
on on-track testing. Model-Based Design shifts the 
process away from tweaking hardware and towards 
using models to explore the design space. By combining 
these models with automated optimization-based tuning 
methods, engineers can significantly reduce the need for 
exhaustive tests in prototype or simulation to arrive at 
the optimal controller gains. For this application, a 
gradient based optimization algorithm starting out from 
zero controller gains required about 100 iterations and 
four minutes of simulation time to find optimal control 
gains that keep the system within the design limits. 
Iterative manual testing for the same number of test 
cases would take over 16 minutes, assuming the tests 
were perfectly repeatable with no lead time between 
iterations and no damage to the vehicle due to a rollover 
occurring during the tuning process. 



In this model, we are looking for the optimal control 
gains for the PID controllers in the ESC that will keep the 
vehicle within certain design limits for body roll angle, 
slip rate, and slip angle, while minimizing speed loss as 
a result of differential braking. The six tunable gains 
provide a nearly infinite set of controller gain 
combinations that would be impossible to exhaustively 
test. We can use the optimization tool to graphically set 
up the required performance criteria (system 
requirements) to limit body roll, vehicle slip, and 
minimize energy lost to ESC braking. After the 
performance criteria are specified, optimization-based 
routines are used to automatically adjust the parameters 
to achieve the design goal – namely, having the vehicle 
execute the fishhook maneuver without rolling over. 
Local optimization techniques (such as gradient based 
methods) or global optimization techniques (such as 
genetic algorithm or simplex methods) could be applied 
to the optimization problem.   

 

Figure 4: Details of the signals fed to the automated 
response optimization blocks. 

Figure 4 shows the model modifications necessary to 
capture the performance criteria that are required for 
optimizing the controller parameters. The signals that 
need to be constrained are fed to Signal Constraint 
blocks and their design limits are set graphically, as 
shown in Figures 5, 6 and 7. The following constraints 
are specified:  

� The body roll is limited to +/-11.5 degrees.  
� The vehicle slip is limited to +/-11.5 degrees. 

� The maximum slip rate is set to +/-37.25 
degrees/sec. 

� The minimum vehicle speed at the end of the 
fishhook maneuver is set to 10 mph. 

� The time at the end of the simulation is set at 10 
seconds.  

 
The simulation time constraint is necessary to penalize 
the early termination of the simulation at vehicle rollover, 
as a result of a set of unsuitable controller gains. The 
constraint values for the signals are selected by the 
designer and represent a compromise between the 
conflicting goals of minimizing energy loss due to 
braking and acceptable roll, slip rates, and angles during 
the maneuver. 

Each signal constraint block defines piecewise linear 
upper and lower bounds on the signal being constrained. 
During optimization the controller parameters are 
adjusted and the simulation rerun in an iterative loop 
until the simulated signals satisfy the specified bounds 
or the optimization routine fails to solve the problem. In 
solving this feasibility problem, the optimizer computes 
the maximum signed distance of the signal being 
constrained to each edge of the piecewise linear bound. 
Typically, a negative value is used to indicate that the 
constraint is satisfied. The optimizer uses the signed 
distance to each edge to update the controller 
parameters (the details of the parameter update 
mechanism depend on the optimization solver being 
used). The optimizer constructs the optimization problem 
independently of the solver. Either classical gradient-
based solvers or non-gradient based solvers, such as 
genetic algorithms, can be used. In this case, given the 
switching nature of the controller, and consequent non-
smooth behavior, gradient-based solvers are less likely 
to find a global solution. As a result, a pattern search 
algorithm [10][11][12] is used. In practice, switching 
between a few different types of solvers is 
recommended in order to ensure that the optimizer is 
finding a global extremum and to rule out convergence 
to local minima of the cost function.  

Figure 5: Evolution of the estimated body roll signal as 
the automated tuning process evolves. 



The optimization algorithm executes until a set of 
suitable gains that attains the design goal is achieved. 
Figures 5, 6 and 7 show the evolution of the signals 
during this process. This particular optimization 
terminated after six iterations of the main loop and took 
approximately four minutes to complete. 

 
Figure 6: Evolution of the estimated slip angle signal as 
the automated tuning process evolves. 

 
Figure 7: Evolution of the vehicle speed signal as the 
automated tuning process evolves. 

CONTROLLER VERIFICATION AND 
VISUALIZATION 

Figure 8 shows a visual representation of the 
performance of the optimized ESC in eliminating the 
rollover in the vehicle. The vehicle that experiences 
rollover has no controller, while the other vehicle has a 
controller with parameters adapted using the 
optimization tool. During the entire controller tuning 
process, human input and testing is limited to graphically 
specifying the bounds for the constrained signals. The 
tool applies optimization techniques that rapidly iterate 
over the parameter space of the PID gains to arrive at 
optimal values that will allow the controller to satisfy the 
design requirements. By means of this simulation, we 
have demonstrated design of a controller that eliminates 

SUV rollover, thereby reducing the need for on-track 
tuning or testing with a physical vehicle. 

Figure 8: Visual representation of the SUV behavior 
with and without the ESC when performing a fishhook 
maneuver at 50mph. 

Figures 9, 10 and 11 indicate show the variation of key 
signals, specifically the actual roll rate, yaw rate, and 
commanded brake pressures for the vehicle. In an 
iterative manual tuning process, an engineer will need to 
run multiple tests or simulations, study the graphs for 
each simulation or test run, and determine if the signals 
are within the design limits.  Iterations are needed until 
the signals move from the case in which the vehicle rolls 
over (represented by the signals with dashed lines) to 
the case in which the optimal gains are attained 
(represented by the signals with solid lines).  
 
 

 
Figure 9: Vehicle roll rate vs. time for the vehicle with 
and without the ESC. 



 
Figure 10: Vehicle yaw rate vs. time for the vehicle with 
and without the ESC. 

 
Figure 11: 4-wheel brake pressures as commanded by 
the ESC vs. time. 

CONCLUSION 

Several automotive manufacturers and international 
regulatory boards have determined that the 
implementation of ESC algorithms in passenger vehicles 
increases the safety of the vehicle’s occupants. In light 
of this finding, the regulatory authority in the U.S. has 
mandated an ESC for all vehicles sold in the 2011 model 
year and thereafter [7]. This paper describes an 
approach using Model-Based Design for developing an 
ESC algorithm that solves the rollover problem. A 
method of automatically tuning the ESC based on 
design requirements is also presented. Engineers can 
also swap out different vehicle configurations in the 
CarSim interface and use the method to easily optimize 
the controller using a single Simulink model of the 
controller. This enables rapid modifications for an array 
of vehicles, reducing the effort required to design 
controllers for a family of vehicles based on a similar 
platform.  
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