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“To check, adjust, or determine by
comparison with a standard.”

So ...
Does Control = Calibration? No!

Do we need Calibrators?

Yes!
Typically, Calibrators are

the plant experts!
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Engine Experiments
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... and do it with a short development cycle, keeping in
mind dimensionality, modularltv, adaptability, scalability,
all the while admitting a rigorous calibration process?
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All models are lies (some are better than others)
(Box)

question then arises as to what confidence we can have in the predictions
of the associated theory. This is a problem in stability theory. We must
‘ask ourselves, “Is it true that the answer derlved from an approximate formulation
is a reasonable approximation to the answers given by more exact formulations?”
 Clearly, this question is one of the basic problems of science, and it is equally
clear that it can never be answered completely What we will have over time ina
hierarchy of theories of greater and greater sophrstrcation yielding more and more
~ accurate answers to more and more questions. But there will never be an ulti-
mate theory that is “exact.” To some people, this fact may be dlsappomtmg, to
~ others l:ke myself it is excrtlng and challengmg to see how far we can get. '

Granted that every equatlon and every measurement is approxrmate the

From Some Vrstas of Modern /\/Iathematlcs by Richard Bellman
- Unrversrty of Kentucky Press, 1968

The “real” answer goes
beyond simply “modeling”
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— a process, not a technique

Define the problem
Understand the plant
Pick a control theory

Control-Oriented model
Calculate a control law

Make 1t work



“Model-Based Control”

U Nn.-msm- VT RS — a process, not a technique

Manager
(it help) Define the problem
(the “real” problem)

Understand the plant
Pick a control theory
Control-Oriented model
Calculate a control law

Make 1t work



“Model-Based Control”

U Nn.-msm- VT RS — a process, not a technique

Define the problem “Modeler”

@erstand the plant> e
- Matlab simulation

- some data
Pick a control theory

Control-Oriented model
Calculate a control law

Make 1t work



“Model-Based Control”

U Nn.-msm- VT RS — a process, not a technique

Define the problem

Understand the plant

C 1 Theori :
ORI TR Pick a control theor

How many academicians start here ....

Control-Oriented model

alculate a control la

Make 1t work



“Model-Based Control”

U Nn.-msm- VT RS — a process, not a technique

Define the problem
Understand the plant
Pick a control theory

Control-Oriented model

alculate a control law

Calibrator and Make it work

control
practitioner
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<Control-Oriented model . and i
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Calculate a control law /
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Usually, one person cannot
play all these roles ...



A Preview of the Panel

UNIVERSITY

 Emissions legislation has significantly increased the
complexity of the calibration problem, and extended this
problem to heavy-duty and off-highway applications

 Complex combustion and exhaust aftertreatment
behavior coupled with insufficient sensor information
make the task of achieving open loop calibration for
new emissions standard very challenging.

« Model-based approaches and computer-aided
calibration tools can assist in this process, however the
current state of models

 For example, the problem of transient system response
IS still a very challenging one: models of engine
transient behavior, especially vis-a-vis emissions, are
still inadequate.



Growth in complexity -1990-2005

Processor: 8-bit — 32-hit
Performance (MIPS): <1 — 300
Transistors: < 1M — 25M
Memory: 33 kB — 4,000 kB

Application parameters: 500 — 8,000
— Expected number in 2007: 20,000

Connector pins: 50 —» 150
ECU manual ~5,000 pages!!

Courtesy: Bosch, FKFS
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TEST BENCH

Steady State Calibration
(i.e. basic maps)

B
e e
T ine
¢
£
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IN-CAR

Transient / Driveability Calibration
(i.e. acceleration,

Courtesy: Bosch, FKFS
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TEST BENCH
,Manual“ Calibration Strategy

@ Starting with the ,,biggest® Influence
® Ending with the ,,smallest” Influence

0,10 —/ L
0,09 i
008 | | Advantage:
= 0,07 _' ® Excellent Results
E 0,06 | 1 @ ,Readable’ Calibration Values .
D 0,05 |
@ 004 | | Disadvantage: ]
© 003 || eLongTestBenchTimerequired |
E 002 | | ®Long Time experienced Personal required s
Q 501 [] eLimited by the number of Dimensions
0 ~\ (Parameters) ]

NOx-Emissions [g/kWh]
Courtesy: Bosch, FKFS
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ECU Mapping Process

TEST BENCH
,<7Automated“ Calibration Strategy

Advantage:

o ,.Global“ Optimization possible (Emission Test Results
can be evaluated on the Test Bench)

o Different ,Target“-Functions can be defined
and optimized w/o new Measurements

s @ Saves Test Bench Time

@ ,.Less“ experienced Test Personal required for the Test
Bench Work (not true for the Test Plan Definition)

Disadvantage:

o Extremely high Measurement Accuracy required
(Measurement Errors are difficult to detect)

@ Not usable with Engines with unknown Operating Limits

@ ECU Calibration Settings are usually not ,,readable*

making In-Car Calibration extremely difficult

Courtesy: Bosch, FKFS
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Evolution of Complexity for HD c
Diesel Engine Calibration

15+ 1974 EPA (HC + NOXx) )
B Up until 1990's, performance
B was fixed by design — no real
i degrees of freedom
Elo L 1988
%' - In 1991, variable injection ®
= T timing was a degree of
% - freedom
CZ) S 1994.'/19?“ £90 —e
-1998# In the late 1990's, electronic fuel systems
In 2004, 2004@ added many degrees of freedom
VG, n ;? — 2010
EGR O ./ ] | ] ] 1 ] ] ] J
added 0 0.1 0.25 0.6 1.0

Particulate [g/(HP-hr)]

2 !
Cummins Inc.
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Evolution of Complexity for HD
Diesel Engine Calibration
In 2007, robust particulate filter after-treatment
was introduced for HD US on-highway engines
What is coming for 2010?

= May introduce new degrees of freedom

= May introduce new after-treatment challenges

Increasing complexity of Diesel engine systems

requires the application of analytical calibration
methods

Cummins Inc.



Analytical Calibration Benefits — The
Cummins Inc Perspective

Design of experiments has led to reduced data
collection times

Key benefit is constant development cycles with
Increasing system complexity

A means to optimize engine systems with many
degrees of freedom outside the test cell
environment
Rigorous problem definition

= Constraints — mechanical/emissions

= Objective function — emissions/fuel consumption

4 -
Cummins Inc.



Analytical Calibration Development
Steady-state Performance

\
Calibration DOE
Plann”’]g Engine Family Torque Curves Data COIIeCt|0n o
=
o
1600 - =
1400 -
2 1200
g 2;10007
— E 800 1 Engine Speed
(qv] 600 - o .
= 400 1 Variation in
8 200 | Speed, Load, Timing
- 0 ‘ ‘ ‘ VG, EGR, Rail Pressure
600 1000 1400 1800 2200 Pilot, Post, etc.
Speed (RPM)
\ 4
Optimization ( Model
and Validation [F= t Development
‘ k) \'. E .. Turbo Speed 60
ANES e ' (krpm)
- BRERNE S T Global Model
i v Tt = Turbo Speed = f(Speed, Load,
VA & EF Timing, VG, EGR, Rail Pressure,
s Ll e o Pilot, Post, etc.)
[T i o~ - Ceec KB e e

Cummins Inc.



Benefits of Analytical Calibration

Fuel Consumption is optimized

over a cycle while constraining cycle
bsNOx and surface smoke targets.

Optimal set of control surfaces
are determined.

bsNOx {g/hp-hr)

2000 :
300

Speed 1000 o Fueling

Smoke (FSN)

2000

Excellent benefit and capability ~ 300

for steady-state performance.

Speed i
P 1000 9 Fueling

6 -
Cummins Inc.
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Transient Calibration Development

The traditional approach for transient tuning has
been centered on transient testing

Current analytical calibration methods for
transient tuning are limited, if available at all

Approach for Cummins Inc is a quasi-steady
cycle optimization

= Captures transient NOx trends reasonably

= Does not capture transient PM trends

7 -
Cummins Inc.



Transient Results

Quasi-Steady Transient NOx Predictions

2000 .
=
(. 1500
3 1000 F |
el 500 = I | I
0 200 400 GO0 800 1000 1200 Comp arison of
El:":":l I 1 1 I I
= measured
< mnn-“‘ M MWMM dilution tunnel NOXx
= 0Pl emissions
"~ om0 | ' ' ' ' vs. quasi-steady
0 200 400 GO0 800 1000 1200 .
predicted
EDDD T T T T T . .
- NOXx emissions
2 1000} ~
-
=
[ b I L P ! e [l ) i | 1l N =
0 200 400 BOO 800 1000 1200

Time (seconds)

8 -
Cummins Inc.
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What iIs Needed for Dynamic
Calibration of Diesel Engines?

Can dynamic models for key performance
parameters be incorporated into analytical
techniques?

What statistical or physical models are
appropriate for transient response?

What is the optimization method for transient
response tuning parameters?

9 -
Cummins Inc.
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What is the Future of Diesel Engines?
Engine + After-treatment (TBD)

T

Oxidation
+ Catalyst

Temperature Sensors

i P

NH, Slip Cat

10 "
Cummins Inc.
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How Can Dynamic After-Treatment
Performance Be Included?

450 —400°C = 752°F

-
o
o

400
350
300
250
200
150
100

50

I O" T T T T T
100 150 200 250 300 350 400 450 500 0 200 400 600 800 1000 1200

80

60

40 =

20 A

New Catalyst Efficiency [%0]
Exhaust Temperature [C]

Temperature [C] Time [second]
Desired \»
[ ] ﬁ:ﬁ Actual
After-treatment performance ;
Is linked to engine exhaust _
conditions Engine | Jf Exhaust
Controls Conditioning

11 )
Cummins Inc.
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Summary

Analytical calibration methods have been very
successful when applied to steady-state
performance

Dynamic tuning capability needs further
development of analytical methods

Inclusion of after-treatment modeling techniques
would enhance analytical calibration methods for
diesel engines in the future

12 .
Cummins Inc.



Analytical Calibration
at
International Truck and Engine
Corporation

2007 SAE Commercial Vehicle Congress
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Calibration Process Overview

Steady State Calibration Transient Calibration

Desktop Calibration Aftertreatment Calibration

Combustion Development Diagnostic Calibration

CALIBRATION
PROCESS

Vehicle Calibration

AUTOMATION

Job Split CALIBRATION & DoE Automation
patabase | MANAGEMENT OPTIMIZATION | cALGEN
TOOLS
Progress Report Map Plots

Calibration Compare Physical Model Fitting
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DoE Automation
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DEFINE KEY RUN DoEs
CREATE BUILD LOCAL LOCAL
POINTS / KEY DOEs IN TEST OPTIMIZATION
® REGIONS CELL MODELS
|
KEY KEY KEY POINT FACTORS AUTOMATIC DoE SURFACE FIT MODEL _ BSFC
4 REGION  POINT . ADAPTATION ' - : -
0 e e ) o o il \ I-
¥ ©@g-"@ =y O *; £\
! v 1 N . | B
8: - —.~.\ : wn .._ \
.\—:\‘ i. —::. aa] ‘1 A
So, @ cuP | J it il - .
> . = BSNOX

OPTIMAL MAP OPTIMAL FACTORS OPTIMIZATION
: FEe e 4  POINTS

» Procedure built on CAMEO (AVL)
and CALGEN (in-house) provides
state-of-the-art tool for steady-
state calibration optimization

& @
o ©
o ©

CAMEO EXPORT GENERATE GLOBAL BUILD
TABLES TO CALIBRATION OPTIMIZATION GLOBAL
CALGEN ECU MAPS MODELS



&> Analytical Tools

= Analytical tools must be end-user-oriented

= CALGEN Iis used by engine calibrators

PROCESS . EASY TO

ORIENTED USE




o,

@2 \ision for Tool Development ® 0

Under

Development|  Transient Modeling with Dynamic

Systems Models (Model-Based)

Transient Modeling with \/\$?/
Dynamic Systems Identification (\@9

o

Steady-State
Modeling



Analytical Models ./.\.

= Analytical models strengthen the calibration process

= Benefits in process flow, data quality and development time

Systematic Approach

Better Knowledge Transfer
ANALYTICAL

MODELS

Easy-to-do Offline Calibration Modifications
Clear Hardware Limit Determination

Optimal Calibration Generation



Math-based Control Development
and Analytical Calibration

Yongsheng He

General Motors Research and Development

October 31, 2007



Outline

e Introduction
= Math-based control development
= Analytical calibration

o Math-based control development
= Detailed 1D engine model
= Mean value engine model

e Results and Discussion
= Step transients
= FTP cycle

e Summary
= Current capabilities
= Future outlook



Introduction

Math-based control development in automotive industry

Much of control design and development process could be done
off-line using computer simulations

Dramatically reduce development time and risk

Integrated engine and control system model valuable
Accurately evaluate control algorithms

Explore different control strategies & study parameter sensitivity
e Before experiments conducted
e Before hardware selected and built

Analytic calibration critical to develop modern embedded
powertrain controllers (complexity, speed-to-market, etc.)

Physical dyno and/or vehicle testing to be minimized
Computer simulations also to be reduced

. Y. He : : : , :
m 10/31/07 2007 SAE Commercial Vehicle Panel on Analytical Calibration




Model Accuracy vs Model Speed

Fast-running engine model with sufficient accuracy
Efficient evaluation of control algorithms and control strategies
Exploration of the classical trade-off in the modeling process

Model Accuracy Model Speed

/\

Detailed 1D engine model
Predict gas dynamics and engine performance within 3-5%
Run speed on the order of 100~1000 times slower than real time

Mean value engine model
Capture dynamics over one or more engine cycles
Run speed close to or faster than real time

. Y. He : : : , :
m 10/31/07 2007 SAE Commercial Vehicle Panel on Analytical Calibration




Integrated Engine & Control System Simulation

MAF_eng_out

PPS (%) pos_wnt_target_out

i

Pexh_bar_out

l

Baro (bar)

pos_itv_target_out Intake_oxy_frac_out
Exh_oxy_frac_out
fqc_q_desired_out
- —
trq_eng_out
BMEP_eng_out

fuel temp (C)

coolant temp (C)

Controller (ECM)

Intake tmp (K)

EGR cooler tmp (K) Diesel Engine

IE Hﬂgg

(SAE Paper 2006-01-0439)




@ — Simulation

FTP CyC|e: §:on

nNO
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(SAE Paper 2006-01-0439)




Detailed 1D Engine Model

Intake Intake EGR EGR
Compressor Intercooler Throttle Manifold Cooler  Valve
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(SAE Paper 2007-01-1304)

Y. He

10/31/07 2007 SAE Commercial Vehicle Panel on Analytical Calibration




Input Variables and DOE

Turbocharged V6 Engine Speed (rpm) [530 3000]

diesel engine with Total Fueling (mg/cycle) [0 59]
external EGR EGR Valve Lift Fraction [0 1]

Boost Pressure (bar) [11.4]

Back Pressure (bar) [12.4]

Focus on the

control of fueling, & \ \ o1 . -
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Y. He : : : , :
m 10/31/07 2007 SAE Commercial Vehicle Panel on Analytical Calibration




Mean Value Engine Modeling — Final Model

Ble——©0o=Fl=—a=— =1 @
Intake-anv 1

Ble——0o=FP=——o= [E]

Exhaust-enw b= Turbine

Hybrid RBF (Model-Based
Calibration Toolbox, MATLAB)
to approximate cylinder

guantities for better accuracy

(SAE Paper 2007-01-1304)

10/31/07

Cylinder_Meanwal o Crank-Tr. EGR%D .
.
|
Ethaumped
R’ Hybrid RBF
Volumetric Efficiency 0.999
Indicated Efficiency 0.967
Exhaust Energy Fraction 0.979

m Y. Fie 2007 SAE Commercial Vehicle Panel on Analytical Calibration




Integrated Engine & Controller Model — Updated
with Mean Value Model

PPS (%)

"

Baro (bar)

fuel temp (C)

coolant temp (C)

Controller (ECM)

Intake tmp (K)

IE Hﬂgg

EGR cooler tmp (K) Diesel Engine

‘SAE Paier 2007-01-1304‘




Model Validation: Vehicle Testing

o Series of different cruising and acceleration conditions

= Selected for validation: 3 step transients (ST)
ST3 STl ST2
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SAE Paper 2007-01-1304
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Step Transient: Simulation Results (1/3)
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Results (2/3)
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Model Validation: FTP Cycle
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FTP Cycle: Simulation Results (1/2)

80— : _
geoi(a) — Mean Vale (RBF) |
mE ......... Detailed Model
£ 40- .
© 0- .
>
"o
0 200 400 600 800 1000 1200 1400

8

VNT Position (%)
3 8
@\
| E

8

EGR Lift (%)
&

o

1400

3
5
2
2
5
5

(SAE Paper 2007-01-1304)



FTP Cycle:
Simulation
Results (2/2)

(SAE Paper 2007-01-1304)




FTP Cycle: Simulation Results Blow-up (1/2)
» Blow-up of the FTP results for comparison (200-300 s)
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FTP Cycle:
Simulation
Results

Blow-up (2/2)

e Blow-up of the
FTP results for
comparison
(200-300 s)
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Model Accuracy vs Model Speed (Summary)

e Mean value engine model developed in this study
= Accuracy slightly compromised (cylinder quantities)
= About 40 times faster than the detailed model

100

[ Detailed 1D Model [15-16]
Mean Value Model (RBF)
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0 I A
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(SAE Paper 2007-01-1304)



Summary

A fast-running mean value engine model with sufficient
accuracy developed for control applications
Reduced from a detailed engine model in GT-Power
> Constrained Latin Hypercube to consider physical constraints
> Hybrid RBF to approximate cylinder quantities for better accuracy
> Completely simplified (cylinders, intake & exhaust system)

Model development time & model throughput minimized

The developed mean value model integrated with a
comprehensive controller model for control analysis
The integrated engine and control system model extensively
validated with satisfactory accuracy achieved
> 1 Step change, 3 Step transients, 1 FTP cycle

Control strategies development & preliminary calibrations before
hardware availability and testing

_ Y. He , : : , :
m 10/31/07 2007 SAE Commercial Vehicle Panel on Analytical Calibration 21




Summary

Current Capabilities:
Provide fast-running models for control development
Explore control strategies and study control parameter sensitivities
Generate preliminary calibrations before hardware availability and testing
Use for air-EGR system calibrations
Allow easy adaptation to hardware changes

Future Qutlook:

Analytic calibration = critical and integral part of modern embedded
powertrain controllers development process, but more important in the
early development phase

Physical dyno and/or vehicle testing - still needed, but to be minimized

Computer simulations - more accurate, powerful and standardized, but
model development time, model throughput, and model runs to be reduced

Y. He : : : S
m 10/31/07 2007 SAE Commercial Vehicle Panel on Analytical Calibration 22




JOHN DEERE

John Deere Power Systems
Analytical Engine Calibration at John Deere

Jason Schneider

Engine Engineering



Motivation

 Performance Optimization

e Off-Road Market

— Number of applications — Over 1000 internal and external

 Application Variation
— Different Usage Profiles
— Different Optimization Objective

Complexity
_ HPCR
— Cooled EGR
-~ VTG and EGR Valve




Worldwide Engine Customers

Internal Applications

= 50% Engine Volume
Ag, C&F, CC&E Division Applications

External Applications

= 50% Engine Volume
Industrial, Power Generation
and Marine Applications
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Analytical Calibration Objective

Generate calibration tables off line from test bed
— Comply with emission legislation

— Minimize BSFC, subject to application, base engine and
calibration constraints

Deere developed empirical engine models are used
— DOE — Matlab MBC Toolbox
— Matlab (MBC Toolbox), Statistica, Table Curve 3D

» Deere Optimized Table Generator (DOTG) interface is used to
enter calibration optimizer settings

— Excel driven Matlab optimization



DOTG Calibration Process Flow
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Input and Output Scheme

Timing

i . Model-Based Calibration Toolbox

Fuel Pressure

f\_]," S

e ’ Mass/Inj

Diesel
Engine Models

Table Set P

BSFC

Torque
Fuel/Air Ratio
VTG Position

Peak Pressure

Turbo. Speed
NOx+HC

TC AFR

PM

Smoke

EGR Cooler T
Comp.Out T
Comp. Out P
EOI Timing
Coolant HR

Intercooler HR
Press. Ratio

Comp. Mass




Benefits

Performance optimization given application constraints

— 1-3% improvement in application specific fuel consumption
compared to conventional techniques

Reduction of needed testing and associated expense

— Measured in hundreds of thousands of dollars compared to
conventional techniques

Control of constraint usage to minimize errors
— Example — peak firing pressure or exhaust temperature
— Consistent reliability performance across applications

Calibration methodology is controlled
— NTE compliance
- Similar performance output of engine across applications

= b



Optimization Potential —
8530 Ag Tractor

6.6%

1.1%
1.0%

1.4%

Emission Mode

O Fully Optimized M Traditional Calibration

. ]
% T




Industry Record, Nebraska Test 2005:
Most Fuel Efficient Row-Crop Tractor

e 8430 Series Tractor / 9.0L PowerTech Plus

— 8.8% more fuel efficient with 40% less emissions

| i |

— Engine optimization NS

sz — Vehicle efficiency improvement




Accuracy




Example Results — OEM Rating
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Example Results — OEM Rating

Smoke
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Example Results — OEM Rating

BSFC
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Example Results — OEM Rating

VTG Position
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Transient Certification Tests

 NRTC in effect for Interim Tier 4

— New problem statement for Deere

» Methods heavily depended on emissions technology chosen

— Number of independent variables
* EGR vs Non-EGR
o After-treatment and interaction




Transient Certification Tests

 Perturbation of calibration tables for sequence of transient test
runs

— Select value for calibration tables that minimizes emission
tradeoff point by point

— Fuel Pressure, Injection Timing, EGR rate, etc.

« Steady state points weighted to for correlation to transient test
— Calibration process as outlined can be used to reach targets

— System control tuning for refinement of NOx and PM tradeoff
for cooled EGR engine

Transiently accurate emission models

— Most elegant



Future

First Steps
 Elimination of confirmation runs for steady state

— Allows further release of expensive calibration resources to
earlier stages of product development

« Accurate transient emission models for transient optimization

— Fits well with need for embedded models for systems with AT
to predict state of system




Future

Needs

 Better integration of calibration process with ECU software
development process

— Collective mind set

— Comprehensive tool set
» Controller Models - Engine Models - Calibration

~» Predictive emission models that are accurate to drive process
~ further upstream

— Engine cycle simulation environment
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Analytical Calibration and What it Means

Systematic Calibration Process Execution
with Empirical Model-Based Calibration
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Accurate Engine Model for

- Hardware in-the-Loop
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- Estimator
Simulation using analytical engine models
and distributed computing fools
Upfront Calibrafion Process Development
with Analytical Model-Based Calibration
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Analytical Calibration Process

Systematic Calibration Process Execution
with Empirical Model-Based Calibration

Reduced fesfing over 70% and improved fuel economy
over 5% for some cuslomers Resulis

|
Data Modeling Calibration Generation

Model-Based Calibration Toolbox

Accurate Engine Model for
- Hardware in-the-loop
- Performance and Fuel
Economy Study
- Estimator
Simulation using analytical engine models
and distributed computing fools

Upfront Calibration Process Development
with Analyfical Model-Based Calibration




Current Benefits of Analytical Calibration

= Enables calibration process prototyping before hardware availability

= Provides diagnostic data for later hardware testing

= Provides fast-running statistical engine model for control development

= Can be used for calibrations related to engine-breathing (e.g., EGR, VE)
= Provides a non-hardware training environment for new calibrations

= Acts as an executable specification of company calibration processes

= Provides a means of determining minimum DoE testing requirements



Analytical Calibration
Workflow Example



ldentify Future Physical Test Setup

EGR Pos. =

SO| —»

Fuel Press. —»

—> Brake Torque
—>Engine Out NO

= > Exhaust AFR

—> Turbo. Speed
—> Peak Pressure

4 —e EGR Fraction

RPM

VGT Pos.

Fuel Mass/Inj

EGR FEraction Cmd.—| EGR Fraction Controller

Closed-Loop




Define Optimization Model Setup

__________________ \'""—:,BSFC
e, Mudal-ﬁaseqasﬁlﬁnTonlhﬂ _kBrake Tor ue ,>’/ObjeC'[ive
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RPM Fuel Mass/lnj

Minimize mode-weighted brake specific fuel consumption,
subject to multiple mode-based output constraints




Design Experiment
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Execute Virtual Testing
with Distributed Computing

EGR Pos. —| TE e g —>Brak.e Torque
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Statistically Model Engine Responses
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Set Up Optimizations With Constraints

) CAGE Browser - optimization_complete{1).cag

_|ol x|
File Edit Optimization Tools ‘Window Help
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Generate Optimal Calibration Tables

0" o

Fuel Pressure Table VGT Rack Position Table



Future Benefits of Analytical Calibration

= |nexpensive calibration adaptation to late program hardware
changes

= Tighter feedback between engine hardware design and control
design using model sharing

= Improvement of predictive quality of CAE engine models resulting
from calibrator feedback
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