| 4 MathWorks

Revisions

Version Description Paragraphs Modified
10 June 2018 Fws;t version of Model Quality N/A

Objectives

Second version of Model
2.0 March 2025 Quality Objectives Al

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

J MathWorks

Contents

1 101 oo 11T [o [5
1.1 PN o1 (- [O URPP
1.2 Intended Audience...................

1.3 SCOPE ittt

1.4 Purpose
1.5 Background and Motivation

1.6 2] = T ol TSR 6
1.7 B =T 0211 0o Lo .Y 2RSS 7
1.8 PN o] o1 <1Y T Y d o o TP PRP R 8
1.9 =T 0]] = 1 TP PR 8
0 T YU o o RPN 9
2 Software Development With DesigN MOUEIS...........uuviiieiiieciieee e e e e e e e e re e e e e e e eeae 10
2.1 OVEBIVIBW ittt e e e s e s e s e s e s e e e s e s e s e s e s e s e s e s e sesesesesesasasesasasasesesasesssnsssesnsnsesnsnnens
2.2 Software planning phase
2.2.1 Y oTo] o 1o 1= 1 T4 To o PR
2.2.2 B oo o =1 T o T o S
2.2.3 Standards definition
2.2.4 MQR identification and allocation
2.2.5 Strategy to achieve MQUO.........uiiiiiii e e e e e et re e e e e e s et be e e e e e eeeantbaeeeaaeeanas
2.2.6 MQR conformance demoNSTratioN.........ccuuviiiiiii i e e e e e arra e s 12
2.3 Software reqUIr€MENtS Phase........oiicuiii i e e e e e eaae e e st e e e snte e e sentaeeessreeeannes 12
2.3.1 Roles of the functionNal MOMEL..........uiiiiiiie e e e e e 12
2.3.2 Main characteristics of the functional Model...........cocviirerciii e 12
2.4 Software architectural design phase
2.4.1 Role of the architecture model
2.4.2 Main characteristics of the architecture model
2.5 Software component design and testing Phasecooieiciiiiiii e e
2.5.1 Role of the component design MOdelooiiiiiiiiiiiiie e e
2.5.2 Main characteristics of the component design modelccvevviiiiieiciiiiee e, 14
2.6 Software component implementation and testing Phase........cceevcvieeecciie e e 15
2.6.1 Role of the component implementation Modelcc.oevveiiiiecii e 15
2.6.2 Characteristics of the component implementation modelccccooviieeeiiiicccee e 15
2.7 Simulation / co-simulation models..........cccccevvvevuvveeeeeeinennns
271 Role of the simulation / co-simulation models
2.7.2 Characteristics of the simulation / co-simulation modelscccoeivuiiiiiiiiiiiieee s 16
2.8 Relationship between design MOAEIS...........uiiiiiii i e e e e err e e e e e e e e aneees 17
3 1Y Lo L= I O T =1 1 Y 2SRRI 19
3.1 OVBIVIBW ittt s e e s e e e s e s e e e s e e e s e s e s e se s e s e s e s e aesesesesesesasasasasasesesssesnsesesesnsnsesnsnnens 19
3.2 Model QUality REQUITEMENTS ...cccuviiiiiiiiieeiiieesie ettt ettt sttt st e sbe e st e e st e sbeesbeesbeesabeesbaesasee s 21
3.21 1Y T Yo [T I = 1Y T | SR 21
3.2.2 1Y T Yo [T oo T2 01 1 0 T=Y 41 €3 21
3.2.3 Model liNKS tO rEQUIFEMENTScciceiieeiciiee ettt e e e e e e sta e e e e rae e e esaeeeennsaeesannneas 22
3.2.4 Model testing against rEQUIFEMENTSc..uuiiiiiiee et e e e e e sbrrr e e e e e e trraeeae s 22
3.2.5 Model compliance with modeling standard...........cccueiiieiiiiiiiiie e 23
3.2.6 1Y oY 1= e =1 - [RPUR 24
3.2.7 1Y oo 1= IR SRR 24

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

J MathWorks*

3.2.8 MOl COMPIEXILY wenvtieieieitiieet ettt s e st sb e s e sbe e eab e sbeeennee s 25

3.29 MOAEI COVEIAGE ..ottt ettt sttt st e et e sbe e sab e e sabeeeaneesaneesanee s 26
3.2.10 1Y T o [T o] o T 1 g1 PRSP 26
3.211 Generated code testing against reqUIreMENTSoociiiiiiiiieiiie e e 27
3.2.12 Generated code compliance with coding standard...........ccccceeviiiiieiiiinieiiie e 27
3.2.13 GENErated COUB COVEIAGE. .. .uiiiuiiieiiiieeeieeeetteeeeeteeeesttee e sttt e eeastaeesaaseeeeasseeesssseessnseeesassesennes 28
3.2.14 GeNerated COUE MODUSTNESS.uiiiiiiiiieieetee ettt esbe e sbeesbeesabee s 28
3.2.15 Generated code eXECULION TIME .o...iiiiiiiieieee et st e s beeebee s 29
3.2.16 Generated code MemOory fOOTPIINtciiiciieeecie e e e e e e e e e e e e rreeeennes 30
3.2.17 MOAE] FEPOSIEONY ..ttt st e s e st e sb e e st esbeeeabeesbeesanee s
3.2.18 Artefacts management...

3.2.19 Graphical COMPIEXILY ..ceuviiiieiiiieie ettt s e s e e e s b e eanee s

3.2.20 MOdEl At STOMAGE ..eeeeeiiiiieei ettt st st e st sb e st e sabe e eab e sbeeeanee s
3.2.21 Design pattern duplication

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

) MathWorks

1 Introduction
1.1 Abstract

This document presents standard quality objectives for models developed with Simulink® at
different phases of the software development lifecycle. This standard, named Model Quality
Objectives (MQO), has been defined by a group of leading actors from the automotive industry
and MathWorks, the company that develops the MATLAB®, Simulink, and Polyspace®
products. The purpose of these guidelines is to clarify and ease the collaboration when
sharing Simulink models in the context of embedded software development to drive the
production of higher quality and integrity software.

1.2 Intended Audience

The intended audience of this document is Simulink users and project/quality/safety managers
interested in establishing a standard approach to assess the quality of design models used at
different phases of an embedded software development.

1.3 Scope

The use of design models developed with the Simulink software and its toolboxes in the
context of embedded software development with Model-Based Design.

1.4 Purpose

This document clarifies how Simulink design models contribute to accelerate development and
verification activities from requirements specification to software implementation. Five types of
models with specific purposes are introduced, each with a specific quality objective to control
their proper usage. Each quality objective is a set of measurable metrics with quantified
satisfaction criteria to facilitate and standardize model quality assessment.

The organizations that apply the concepts presented in this paper should experience the
following benefits:

a) Shared understanding of Model-Based Design within the organization

b) Application of a quality model adapted to Model-Based Design projects and compatible with industry
software quality and safety standards

c) Assessment of model quality at different phases of projects

The organizations that also collaborate with partners to execute Model-Based Design projects
should experience the following benefits when applying the concepts presented in this paper:

a) Improved split of responsibility between parties at the beginning of projects
b) Common understanding of model quality
c¢) Common expectation on model quality when sharing models

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

-} MathWorks*

1.5 Background and Motivation

Design models developed with the Simulink software are widely used in the industry to
accelerate the development of embedded software. Those models enable engineers to
accomplish various engineering tasks such as frequency-domain analysis, desktop simulation,
formally-based verification, and automatic code generation. This development process is
known as Model-Based Design.

Design models can be developed at a very early stage to validate requirements and quickly
explore design solutions. Such models can also be incrementally refined until they reach a
level of maturity that is sufficient to generate code that complies with international software
safety standards. To incrementally increase the maturity of the design models, different
engineering disciplines need to be involved such as system engineering, control engineering
and software engineering. Collaborating with the same language, tools, and models is a great
way to improve communication between engineers and reduce the project cost and
development time. However, with different disciplines using design models at different project
phases, confusion may arise about the contribution of models and what they represent.

An incorrect interpretation of what the models represent can lead to an incorrect use of those
models and ultimately impact the quality of the software produced. Users that participate in the
definition of MQO have shared many concrete use cases when underspecified models or
models with insufficient maturity have been prematurely promoted as “ready for coding”.
Consequently, higher development effort than planned, bugs, and difficult conversations
related to responsibilities would then take place. To avoid this situation, this document
proposes to clarify the role of design models for the development of embedded software and
standardize measurable criteria to verify their quality.

This approach has been inspired by the Software Quality Objectives (SQO) [1] defined by a
group of automotive actors and MathWorks in 2010, at a time when most exchanges between
car manufacturers and suppliers were based on textual specification and manual code. This
approach also aims to go one step further in the formalization of model sharing, as defined by
Bosch [2] in 2014, and in the implementation of techniques and measures proposed by
software safety standards such as 1S026262-6. [3]

1.6 References

Ref | Description

[1] Patrick Briand (Valeo), Martin Brochet (MathWorks), Thierry Cambois (PSA Peugeot Citroén), Emmanuel
Coutenceau (Valeo), Olivier Guetta (Renault SAS), Daniel Mainberte (PSA Peugeot Citroén), Frederic Mondot
(Renault SAS), Patrick Munier (MathWorks), Loic Noury (MathWorks), Philippe Spozio (Renault SAS), Frederic
Retailleau (Delphi Diesel System), Software Quality Objectives for Source Code, ERTS 2010-Conference, 2010.

[2] S. Louvet, Robert Bosch (France) SAS, Dr. U. Niebling, Dr. M. Tanimou, Robert Bosch GmbH Model Sharing to
leverage customer cooperation in the ECU software development; Toulouse, ERTS 2014-Conference, 2014.

[3] ISO 26262 International standard for functional safety of electrical and/or electronic systems in production
automobiles defined by the International Organization for Standardization (ISO) in 2011.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

+ J MathWorks'

[4] RTCA/Eurocae, Software Considerations in Airborne Systems and Equipment Certification, RTCA DO-331 /
Eurocae ED-218, December 13, 2011.

[5] Automotive SPICE Process Assessment / Reference Model from VDA QMC Working Group 13 / Automotive SIG

[6] Railway applications - Communication, signalling and processing systems - Software for railway control and
protection systems, EN 50128:2011

[7] Hersteller Initiative Software (HIS) is an initiative from German automotive manufacturers whose goal is the
production of agreed standards within the area of standard software modules for networks, development of
process maturity, software test, software tools and programming of ECU’s. HIS specifies a fundamental set of
Software Metrics to be used in the evaluation of software.

[8] MathWorks Advisory Board (MAB) Guidelines

[9] MISRA C - Set of software development guidelines for the C programming language developed by MISRA (Motor
Industry Software Reliability Association). Its aims are to facilitate code safety, security, portability and reliability in
the context of embedded systems, specifically those systems programmed in ISO C/ C90 / C99.

[10] | Newell, A. (1994). Unified theories of cognition. Harvard University Press

[11] | Peugeot Thomas (2014). System Engineering, for a Cognitive Sciences Approach. CSDM 2014

1.7 Terminology

Term Definition
Simulation / Co- A model developed with MATLAB, Simulink and Stateflow that will not
Simulation Model be used in the final design. These might be preliminary models (trade

studies, simplified models...) or environmental models for example.
While the quality of these models does not generally impact the
generated software, they are crucial for documentation, reuse and
performance of the overall workflow.

Design Model A model developed with MATLAB, Simulink and Stateflow to design
software architecture and algorithms for signal processing,
communication or control software. In the context of MQO, four types of
design models are defined: the functional model, the architecture
model, the component design model, and the component
implementation model.

Model Higher Level A requirement satisfied by a design model.
Requirement

Model-Based Design A process that systematically relies on the use of models at different
phases of the system and software development process.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

-} MathWorks

Model Quality Objective A quality objective that applies to a model.

Model Quality A textual expression that specifies a non-functional requirement of a
Requirement design model.

1.8 Abbreviations

MAAB MathWorks Automotive Advisory Board
MBD Model-Based Design
MQO Model Quality Objective
MQR Model quality Requirement
SQO Software quality Objectives
1.9 Template
The following template is used to specify MQR in section 3.2.
Requirement ID Requirement title
Description A description including a measurable satisfaction criterion on model, generated code or executable
generated code.
Recommendation | Level of recommendation for each model quality objective:
lovel e Emptyie. N/A
e Recommended i.e. Recommended for early verification
e Mandatory
MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
XXX XXX XXX XXX XXX
Notes Further information to clarify the requirement description.
References / References or examples of techniques to implement the requirement with MATLAB/Simulink.
Examples of
techniques
Rationale Justification for quality
Last update MQO Version when requirement was last updated

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

) MathWorks

1.10 Authors

This document was prepared by the MQO working group composed of representatives from
MathWorks, automotive OEMs and suppliers.

V1 Main Contributors

Jérébme Bouquet Renault
Stéphane Faure Valeo
Florent Féve Valeo
Matthieu Foucault PSA
Ursula Garcia Bosch
Frangois Guérin MathWorks
Thierry Hubert PSA
Florian Levy Renault
Stéphane Louvet Bosch
Patrick Munier MathWorks
Pierre-Nicolas Paton Delphi
Alain Spiewek Delphi
Yves Touzeau Renault

V2 Main Contributors

Florent Feve Valeo
Ursula Garcia Bosch
Jean Duprez Airbus
Tahina Bezanahary Airbus
Stephane Follic Schneider

Christophe Ducamp Airbus DS

Jean-Paul Marcade MathWorks
Ibrahim Saddoug MathWorks
Laurent Royer MathWorks

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

) MathWorks

2 Software Development with Design Models

2.1 Overview

This document defines a development approach based on four types of design models
supporting the left-hand side of the V-cycle.

Figure 1: Model-Based Design

Tool

1 1
1 -
! &
- Software Software qualification | ! 5@’.0"‘ s S
1 plans standards ! & & S S
reports & E S &
&L ¢
'1 ES RN o &
! A &8 F&
———————————————————————————————— & & Q¢ [S

1
Software :
requirements Functional Software tests |:>
model
1

Software tests Software tests

=

A — .

il bl 1

1 oftware e : | - -

: component Arcl IZ Iure . ntegration :> Integration

1 3| requirements e ! tests tests

D ! T T TERET T T T T T 1T T TaENEE T T T TS 'l
|_ ____________ N r 7 — /

Legend: H e Software |_‘_’_§ Software /
1 o i component oy component S
;

The Model-Based Design/MQO software development lifecycle involves five specific phases
marked as 1 to 5 in Figure 1 Sections 3.1 to 3.5 will provide greater details on the phases.

Figure 2 shows how the Model-Based Design/MQO software development lifecycle maps to
other software development lifecycles from the industry. The phases supported by design
models are highlighted with a dark background, and Model-Based Design is referred to as

MBD.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

» MathWorks'

Figure 2: Model-Based Design / MQO software phases versus other industry standards [3], [4], [5], [6]

MBD/MQO 15026262 Automotive SPICE D0O-331 EN50128

1 | Initiation of product " | Initiation of product [M
Software planning development at the development at the Software planning Software planning
software level Ll software level L1 L1
| Specification of | |]]
Software pecilication o Software Software Software
X software safety

requirements . requirements analysis requirements requirements

requirements L [L
Software architectural | Software architectural | | Software architectural Software architecture
design B design || design Software design and design

(architecture and Low

level requirements)
Software component Software detailed Software component

i i Software unit design . . i
design and testing L ! _E || design and unit || L design
and implementation .
T ————— — construction
Software component Software component
implementation and . . ! — Software coding implementation and
testing || Software unit testing | | Software unit verification || || testing
. . Software integration Software integration
Software integration 8 X 8 Software integration Software integration
and testing and integration test
Verification of L
. Software gualification . .
Software testing software safety test Software testing Software validation
_— Il requirements | | J L i .

2.2 Software planning phase

This section defines the planning activities that must be carried out to prepare the use of
design models. This is recommended for the use of functional models and mandatory for the
use of architecture, component design, and component implementation models. Most of these
concepts are already imposed by safety standards such as DO-331 [5].

2.21 Scope definition

All design models may not be applicable to all projects. For instance, the scope of Model-
Based Design can be reduced to the development of a single software component or only
used to support the software architectural design specification. The project shall define the
software development phases that will be supported by design models. Each design model
shall be managed independently as a work product of the software development phase it
belongs to.

2.2.2 Tools definition

The tools that support the development and verification of design models shall be identified
and classified at the beginning of the project. Those tools shall be qualified, if required by the
project.

2.2.3 Standards definition

The modeling standard used to support the development of design models shall be defined
prior to entering the software architecture phase. The coding standard used to support the
development of design models shall be defined prior to entering the software component
implementation phase, or ideally, prior to entering the software component design phase.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

\ MathWorks:

2.2.4 MQR identification and allocation

The MBD quality requirements (MQR) defined in 3.2 shall be identified and agreed to by the
project stakeholders at the beginning of the project. Some MQR shall be tailored to the
project requirements (e.g., model coverage or model complexity). Each MQR shall be
allocated to a project stakeholder.

2.2.5 Strategy to achieve MQO

Once the MQR has been defined for the project, a strategy shall be defined to achieve the
objective. Such a strategy can include intermediate steps corresponding to project milestones,
specific training, or a tools migration process. For instance, it is recommended to gradually
increase the coverage criteria and not wait for the final version of the software to perform most
of the test development effort.

2.2.6 MQR conformance demonstration

The conformance with the project MQR shall be planned and demonstrated at the end of the
project. The verification of each MQR shall lead to the production of a report produced by the
project stakeholder responsible of the MQR. Sufficient justifications must be provided when
MQR are not met (e.g., missing coverage should be justified). The person in charge of
assessing the compliance shall have the necessary skills to understand the justifications.

2.3 Software requirements phase

This section focuses on the functional model developed during the software requirement
phase.

2.3.1 Roles of the functional model

The role of the functional model is to clarify and refine complex dynamic behaviors that need
to be translated into software requirements.

In most cases, the functional model and the software requirements are concurrently
developed by the person in charge of the software requirements. This functional model
engineer supports the stabilization of the software requirements (the “what”) while identifying
good design solutions (the “how”) that could be further elaborated during the design and
implementation phases. The functional model is often referred to as an executable
specification because it provides a functional behavior that satisfies the functional
requirements. However, the functional model does not replace the software functional
requirements. The functional model contributes to the validation activities of the software
requirements.

2.3.2 Main characteristics of the functional model

The functional model focuses on the correctness of algorithms and equations. It does not have
to consider design constraints related to embedded software development. However, when
developing the functional model, it should anticipate the main characteristics of the hardware
platform and their impact on the software requirements.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

«)\ MathWorks'

The functional model does not have to be representative of all the software functional
requirements. Figure 3Error! Reference source not found. shows an example of a functional
model using continuous time and is limited to a small function of a larger software.

Figure 3: An example of functional model (Anti-Lock Braking system)

@ ¥ Input
Desirad Wheel Spead W
relative — - Tire Torgue
- fire forque
slip
cirl
3

Wheel Speead
T yout
1-0 f
- >

mu-slip Waight 4 ehicle speed
friction curve I = {angular)
—
E
5d
spead .

Vehicle
Stopping distance

b

A J

1]

1.0 - u{1¥{u(2) + (u(2)==0)"eps) L:.
slp | |

Ralative Slip

2.4 Software architectural design phase

This section focuses on the architecture model developed during the software architectural
design phase.

2.4.1 Role of the architecture model

The role of the architecture model is to contribute to the specification of the software
architectural design.

Graphical notation is naturally well-suited to defining an organization of components,
representing interfaces and connections, and specifying component scheduling. For a
complex architecture, it is not conceivable to develop such a diagram without a proper
modeling language and a computer-aided design tool such as Simulink.

2.4.2 Main characteristics of the architecture model

The architecture model fully specifies the static software architectural design (e.g., component
models, interfaces) and provides links/references to the component design models that will be
built or are already built. The architecture design model is associated with a data dictionary
that defines the data and interfaces of the software and its components.

The architecture model directly contributes to the design activities and is therefore subject to
conformance with industry quality standards, safety standards, and/or architecture standards
(e.g., traceability to requirements, compatibility with architecture standard).

The next figure shows an example of an architecture model that references component
models represented by model references.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

-} MathWorks*

Figure 4: Example of architecture model

Architectural design rational

DOC
Text|

Outputs control
Inputs Conditioning ce_ControlThrotle_MQO1
Functions
cc_Leverlnput_MQO1 =]
Target

cc_ModeMngt_MQO1 0..19 (%)

02551 - e o = vehicieThrotieCma o1 %
LeverPos ccLeverCmd LeverCm [0.35¢ L £ vehlcleThrottieCma

colavarPos £ coLeverPos £ ccLeverCmd ceSpeedTarg i cleThrotleGme
(=] [0..100] (%)
hicleSpeed TETR) b & e THaiener | “o"ele ThrettieDem
Cruise Lever Input ~ vehicleSpee [T oy el T B ehiceTi{ofeDem
o at Control Throttle
7y 100 (% brakeDermand EctStatus]
£ brakeDemand
brakeDemand 3 cc_DashboardDisplay_MQO1
-60..300] (ken-he) cc_VSpeedinputs_MQO1 Cruise control peedTarget
hicles dA-BESveh\c\eSPeedAES
vehicle! e [-]00..3D0]
" ! ! «cc_DistanceWarning_MQO1 = -
g ’ 7 md
11503001 tkrvhr)_ k) hof . ngd(l;slagnewammgﬂncm Display pmet]
o pe'efdf’”""’v"ee'spee‘i (kamhr) istanceWarningFenGm — distanceWamingFenStatus] E LT -
= 7 1 DashBoardDisplay
Vehicle Speed Inputs i
' [0--3000] {m) T distanceWarning
£ distanceAhead
distanceAhead Dashboard Display
Distance Warning

2.5 Software component design and testing phase

This section focuses on the component design model developed during the software
component design and testing phase.

2.5.1 Role of the component design model

The role of the component design model is to provide a complete specification of the software
component design and support its verification with dynamic and static analysis.

The use of a high-level modeling and programming language enables better management of
the complexity of algorithms and reduces the probability of design errors. The support of
simulation and static analysis contributes to elimination of design errors.

2.5.2 Main characteristics of the component design model

The component design model fully specifies the algorithms and equations that will be part of
the embedded software and excludes any elements used for debugging or prototyping such
as measurement points or override mechanisms. Each component design model is associated
with a data dictionary that defines its interface, parameters, and monitored signals.

The component model directly contributes to the development activities and is therefore
subject to conformance with industry quality standards, safety standards, and/or design
standards (e.g., conformance to modeling standard, traceability to requirements).

Figure 5 shows an example of a component design model with fully defined interfaces and
sub-functions implemented with state machines.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

\ MathWorks:

Figure 5: Example of component design model

Function Description

DOC
Text

4 2
.1 ccLeverCmd setCommand | setCommand
- ccLeverCmd o [0..255] (kmhr)
ccLeverCmd ccSpeedTarget
-E£ ccSpeedTarget
FilterLeverCmd ccSpeedTarget
[-100..300] (km-hr)
2 hicleSnead P vehicleSpeed
ehicleSpee:
Vehidespeéﬁv | i tD
[0..100] (%) L r—ED
brakeDemand ccStatus
brakeD —EdbrakeDemand
rakeDeman " Mealy /

SetCruiseControl

2.6 Software component implementation and testing phase

This section focuses on the component implementation model developed during the software
component design and testing phase.

2.6.1 Role of the component implementation model

The role of the component implementation model is to enable the generation of production
code for a specific embedded target and basic software.

2.6.2 Characteristics of the component implementation model

The component implementation model fully specifies the software component implementation.
Implementation details are added to the data dictionary to refine how to represent parameters
and signals in the target memory. Code configuration options and customization are defined to
integrate the generated code with specific basic software functions, so they match the target
characteristics (e.g., byte ordering) and satisfy the component code memory footprint and
execution performance requirements allocated to the software component.

The generated code of the component implementation model directly contributes to the
development activities and is therefore subject to conformance with the industry quality
standard, safety standard, and/or coding standard (e.g., MISRA C®[9]). Each component
implementation model is associated with a data dictionary that defines its interface parameters
and monitored signals. Figure 6 shows the target hardware configuration of Embedded Coder.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

» J MathWorks'

Figure 6: Example of code generation configuration for the component implementation model

Hardware board: | None =

Code Generation system target file: ert.tic

Device vendor: | ARM Compatible ~ | Device type: |ARM Cortex x
* Device details
Number of bits Largest atomic size
char: 8 short: 16 int: 32
integer: Lon .
long: 32 long long: 64 float: 32 <9 8
double: |64 native: 32 pointer: |32 ficating-point: [BRUBE o
size & 32 ptrdiff_t: | 32
Byte ordering: Little Endian - Signed integer division rounds to: | Zero -

Shift right on a signed integer as arithmetic shift

[support long long

2.7 Simulation / co-simulation models

This section focuses on the models that are not used to generate the final software but that
are produced / used in the design phase. These could be for example environmental models,
test scenarios or simplified models used for trade studies.

2.7.1 Role of the simulation / co-simulation models

The role of these models is specific to each project. One could argue that they shouldn’t be
monitored as they do not directly impact the generated software. But they can have purposes
that put them in the critical path:

e Performance when co-simulating / testing
e Reused in other projects
e Documentation

2.7.2 Characteristics of the simulation / co-simulation models

Generic simulation / co-simulation model can have different goals, hence different
characteristics. A common characteristic is often the level of fidelity. Developing highly
representative models is not always a productive idea as these models take longer to develop,
and usually longer to simulate.

A good simulation / co-simulation model is the one that help you answer a specific question in
a reasonable amount of time. Sometimes a first order model is enough (system level trade
studies), sometimes a detailed one is necessary (transient behavior of a system).

If a high-fidelity model exists, it can sometimes be more efficient to use it as a baseline to
develop a new simplified model that answers the question instead of reusing it directly.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Figure 7: Model used to compare different gravity models

Gravity Models with Precessing Reference Frame

Direction Cosine Matrix
ECEF to NED

>yl DCMy
»!
ulh(m) WGS84
>
(Exact) 2
Exclude Atmos 9 (M/s)
— Jo JD Precessing Ref -
x-axis
-lulian Date WGS84 Gravity Model WGs84 s
in ECEF
latitude >
p | (deg) Spherical Harmonic
> J l]
: X, (m) b fra o] X, (m 152 P Y——(D
longitude ¢ (m) ﬂ 1 (™) 9y (M/5) SHwPrec y-axis
€D h(m) EGM2008 Y-Axis
altitude Spherical Harmonic Gravity Model
LLA to ECEF Position Centrifugal Effect
. z-axis
< ! Yecer Ew
Custom 1
Rotational Rate in a Centrifugal Effect Model —
Precessing Reference Frame
Zonal Harmonic
]
2,
X e (M) Gocer (M)
Copyright 2009-2022 The MathWorks, Inc. Earth

Zonal Harmonic Gravity Model

2.8 Relationship between design models

Each design model shall be independently managed as a work product of the software
development phase in which it belongs. At the same time, design models can share design
information and shall be consistent. For instance, the component design model in Figure 5
share its interface definition with the architecture model of The next figure shows an example
of an architecture model that references component models represented by model references.

Figure 4Whenever consistency is required, reuse is encouraged.

Figure 8 indicates which aspects can be reused between design models (“reuse” arrow). It
also provides guidance on which aspects of design models can be partially reused to
accelerate development (“refine” arrow). The arrows on Figure 8 can apply to the following
modeling aspects of design models:

e Architectural aspect: interface, scheduling, partitioning, intercomponent control and data flow, etc.

e Algorithmic aspect: mathematical calculation, component control and data flow, state machine, truth
table, etc.

e Code generation aspect: memory management, data access, function prototype, code optimization, etc.

The design models differ from each other’s by the level of maturity and importance of the
different modeling aspects described above. Figure 8indicates the levels of maturity and
importance based on the following definitions and representations:

e Maturity level: High (Production) / Low (Prototyping)
e Importance level: Mandatory (plain line) / Recommended (dotted line)

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Figure 8: Design model relationships and contribution to prototyping and production development

Design model aspect

Architectural Algorithmic Code generation
Functional model | Prototyping | | Prototyping ‘ i____F;_r_P_}_g_f_l_;_)_i_;lé-__E
refine (1a) @ reuse (2a)

. . I . [| . [}
Architecture model i Prototyping : i Prototyping :

|| SICAMECHICMACEl] | Frocuction | Frototyping o | rrototyping
B componentdesin Qrevseuw frefiversy
“g —— | Production | ‘ Production ‘ ! Prototyping i
,% F— reuse (ic) @ reuse (2c) B refine (3¢)
implementation model | Production | | Production ‘ ‘ Production ‘
simulation /<0~ | 44 o+ { Environment* | . Validation” |

simulation model e i tommmmmmmmmmmmd lemmooomm oo

*These are examples

The functional model shall have structured algorithms that can contribute to the validation of
the software requirements with modeling and simulation. A model’s code generation
configuration for rapid prototyping can be useful to validate the software requirements with a
real-time environment. The development focus shall be on the software requirement (not
represented on the figure). The entire model shall be considered a prototype.

The architecture model shall define the component interface and scheduling of the software
architectural design. The architectural design aspect of the functional model can serve as a
baseline to initiate the development of the software architecture for production (1a). The
prototype algorithms of the functional model can populate the architecture model to enable
early dynamic verification of the model in simulation to evaluate the impact of the architecture
on the functional behavior (2a). A prototype code generation configuration representative of
the software architecture standard (e.g., AUTOSAR) can be created to achieve early
verification of the impact of the functional behavior in real time and its integration with software
and hardware (e.g., AUTOSAR RTE).

The component design model shall fully define the software component design with its
structure, scheduling, and algorithms. The interface of the model shall be consistent with, and
can be reused from, the architecture model (1b). The prototype algorithms developed for the
functional model can serve as a baseline to define the production algorithms (2b). A prototype
code generation configuration can be used for early verification of the non-trivial impacts of the
design model on the generated code (e.g., compliance with the coding standard, level of code
coverage versus model coverage, code expansion).

The component implementation model shall define both the software component design and
implementation. The structure, scheduling, and algorithms shall be reused from the software
component design model (1c, 2c). The code generation configuration shall be used for
production code generation and shall then be compatible with the software coding standard
and the target hardware.

Simulation / co-simulation models do not appear on this figure at it focuses on the design
process.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

«)\ MathWorks'

3 Models Quality

3.1 Overview

As design models are critical for development using Model-Based Design, their quality must
be carefully assessed. Models can automatically transform into other design artifacts such as
documentation, source code, or executables. Therefore, the quality objectives defined on the
models shall impact the models themselves as well as their derived products. A specific
quality objective is defined for each type of design model to account for their specific role.

Table 1: Model Quality Objectives of models

Design model name Quality Objective
Simulation / Co-Simulation Model MQO-0
Software Functional Model MQO-1
Software Architecture Model MQO-2
Software Component Design Model MQO-3
Software Component Implementation Model MQO-4

Table 2 below provides the list of Model Quality Requirement (MQR) applicable to achieve the
quality objective of each type of model. The details of each MQR are specified in section 3.2.

Table 2: Overview of Model Quality Requirements of MQOs

MQR ID | MQR Title MQO-0 | MQO-1 MQO-2 | MQO-3 | MQO-4
MQR-01 | Model layout M M M M M
MQR-02 | Model comments R M M M M
MQR-03 | Model links to requirements M M M M
MQR-04 | Model testing against requirements M R M M
MQR-05 | Model compliance with modeling standard M M M M
MQR-06 | Model data M M M M
MQR-07 | Model size M M
MQR-08 | Model complexity M M
MQR-09 | Model coverage M M
MQR-10 | Model robustness M M
MQR-11 | Generated code testing against requirements R M
MQR-12 sGtz:g:Led code compliance with coding R M
MQR-13 | Generated code coverage R M
MQR-14 | Generated code robustness R M
MQR-15 | Generated code execution time M
MQR-16 | Generated code memory footprint M
MQR-17 | Model repository M M M M M
MQR-18 | Artefacts management M M M M M

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

\ MathWorks:

Py
<
)
)
)

MQR-19 | Graphical complexity
MQR-20 | Model Data Storage
MQR-21 | Clone Detection

M: Mandatory
R: Recommended

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

|, MathWorks'

3.2 Model Quality Requirements

3.21 Model layout
MQR-01 Model layout
Description The model needs to be readable on common screens / paper sizes. This is equivalent to a
Simulink canvas of 2000 x 1500 pixels.
Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Mandatory Mandatory Mandatory Mandatory Mandatory
Notes The 2000 x 1500 pixels canvas is equivalent to an A4 paper (or letter size paper) printed

with ~80% zoom ratio and can be tailored.

References /

- Simulink subsystems
- Stateflow sub-charts

Examples of - Simulink bus

techniques

Rationale Printing a Simulink model can be necessary to archive or share models as documents.
Splitting models into several sheets for printing makes them difficult to read
A model diagram that can be completely displayed on screen improves readability and
eases model review.
Reducing the size of the diagrams forces the model developer to better organize large
model and data into hierarchical structures of buses and model references or subsystems.

Last update 2.0

3.2.2 Model comments

MQR-02 Model comments
Description The model comments shall provide a description of the model itself and the following types
of elements:
- Simulink subsystem
- Simulink function and S-function mask
- Stateflow chart, sub-chart, truth table, state transition table, and flowchart
- Simulink and MATLAB function blocks and sub-functions
Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Recommended Mandatory Mandatory Mandatory Mandatory
Notes A comment can include a mix of text, equations, diagrams, and pictures.

A comment can be embedded in the model or a link can be established from the model to a
separate and accessible document.

The quality of the comments is not in the scope of this requirement and shall be assessed
by peers during the model review.

References /

Examples of

- Insertion of blocks for documentation
- Description in Simulink subsystems masks
- Stateflow diagrams annotations

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

» J MathWorks'

techniques - Comments in Simulink and MATLAB function codes

Rationale Like code, a model without comments is harder to understand by peers. Lack of description
can negatively impact the efficiency of the peer review activity and maintenance activities.

Last update 2.0

3.2.3 Model links to requirements

MQR-03 Model links to requirements

Description The model elements that specify algorithms and calculations shall trace to the model
higher level requirements.

The design model elements that specify interface shall trace to the software interface
requirements or software component interface requirements.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Mandatory Mandatory Mandatory Mandatory
Notes A model element is implicitly traced to a model higher level requirement if one of its

parents is traced (e.g., its parent subsystem).
The model shall trace to the right level of requirements:

- Functional model and architecture model shall trace to software requirements
- Component design model and component implementation model shall trace to software
component requirements
The correctness of the links to model higher level requirements is not in the scope of this
requirement and shall be assessed by peers during the model review.

When model references are used inside component design and implementation models,
each referenced model shall trace to its own model higher level requirements.

References / - Bidirectional links between model and requirement tool

Examples of

techniques

Rationale Traceability to requirements eases static model verification against requirements. It
facilitates:

- Requirement coverage analysis
- Impact analysis on design following changes on requirements
- Identification of unintended or useless design to be present in the model

Last update 2.0

3.2.4 Model testing against requirements

MQR-04 Model testing against requirements

Description The model shall produce the expected outputs when exercised by tests derived from and
traced to the model higher level requirements.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Recommendation
level

MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

Recommended

Mandatory Mandatory Mandatory

Notes

This is often called Model In the Loop testing (MIL).

The model tests shall be derived from and traced to all model higher level requirements
which verification strategy is testing.

Each test shall have a defined procedure, stimuli, and expected outputs.
The model test environment shall not impact the behavior of the model under test.

The correctness of the tests and links to model higher level requirements are not in the
scope of this requirement and shall be assessed by peers during the tests review.

References /

- Formalized requirements can help deriving design and test without breaking the digital
continuity

Examples of - Stimuli and expected outputs time series
. - Test sequences and test oracles
techniques) . .
- Automation of test procedure, execution, and reporting

Rationale The simulation of the design model enables the discovery of design errors at design time.
It can also contribute to refining model higher level requirements or correcting and
validating requirement-based tests.

Last update 2.0

3.2.5 Model compliance with modeling standard

MQR-05 Model compliance with modeling standard

Description The model shall be compliant with the modeling standard.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Mandatory Mandatory Mandatory Mandatory
Notes The modeling standard(s) shall be defined during the project software planning.

Model compilation warnings and errors reported by Simulink diagnostics are considered
modeling standard violations.

Additional workflows might require additional standard compliance.

References /

- MathWorks Advisory Board (MAB) Guidelines[8] is a great starting point
- Company Wide standard

Examples of - MathWorks modeling guidelines for high-integrity systems
. (HIS - Include compatibility with MISRA C* compliance)
techniques
Rationale The model standard can enforce best practices and define a subset of the modeling
language that limits the possibility of incorrect use of the language.
Last update 2.0

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

-} MathWorks*

3.2.6 Model data

MQR-06 Model data
Description The model I/O signals, calibrations, parameters and test points shall be fully defined. The
required properties depend on the model objectives but might include the following:
U Name
. Description
e Design min/max
e Initial value (output only)
e Data type (e.g., base type, fixed-point type, enumerated type, structured type)
e Size
e Physical unit
e Safety integrity level
° Memory storage
Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Mandatory Mandatory Mandatory Mandatory
Notes The compute method is necessary for data coming from external software, driver, or
communication network.
An initial value or safe value can be added for output and safety critical data.
Memory storage only needs to be defined in the component implementation model.
Display format for measured signal and calibration for floating point is recommended.
Examples of - Simulink data objects
) - Simulink data dictionary
techniques
Rationale Model data are part of the design and need to be fully defined. For instance, incorrect or
unknown data integrity level or data design min/max can impact the model and software
reliability and robustness.
Last update 2.0

3.2.7 Model size

MQR-07 Model size
Description The model size shall be limited. This can either be a limit in terms of number of elements:
- The number of Simulink blocks
- The number of MATLAB executable lines of codes
- The number of Stateflow transition, states, and connections
- The number of truth tables decision
Or a limit in terms of depth.
Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Recommended Mandatory Mandatory
Notes For the number of blocks, an empirical limit can be set to 500. For the depth, we
recommend 7 [10] [11].

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

» J MathWorks'

The model reference block & subsystem reference block only counts as one element.

The company standard utility function (e.g., Simulink library block, MATLAB function file)
only counts as one element.

Please refer to MathWorks guidance on large-scale modeling in Simulink documentation.

References /

Model references, subsystem references, libraries, ..

Examples of

techniques

Rationale Very large models are more difficult to merge and are more likely to be modified by several
users at the same time.
Smaller models are more likely to be reusable and easily configurable.
Generated code of very large models cannot be incrementally tested.

Last update 2.0

3.2.8 Model complexity

MQR-08 Model complexity

Description The model and its subsystems, Stateflow charts, and MATLAB functions shall have a
limited local model complexity .

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

level Mandatory Mandatory

Notes Local complexity is the complexity for objects at their hierarchical level.

Aggregated complexity is the cyclomatic complexity of an object and its descendants.

This document does not impose a threshold as it should be adapted to each company /
project based on experience and habits. This being said, if we try to adapt the HIS [7] code
metric to Model-Based Design, we can recommend 15 for MATLAB Code, 30 for state
charts and 20 for other models as a starting point.

References /

Model complexity is a measure of the structural complexity of a model. It approximates the
McCabe cyclomatic complexity measure for code generated from the model.

Examples of

techniques
There’s only a loose correlation between model complexity and the cyclomatic complexity
of the generated code. This being said, model complexity is a good indicator of model
health.

Rationale Cyclomatic complexity is a leading testability metric.

Last update 2.0

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

3.2.9 Model coverage

MQR-09 Model coverage

Description The model structure shall be fully covered by the test suite that is derived from and traced
to the model higher level requirements.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Recommended | Recommended Mandatory Mandatory
Notes The structural coverage criteria chosen shall be at least conformant to the structural

coverage criteria imposed by the software safety integrity level.

For MQO -3 & MQO-4, we recommend a 100% coverage.

For MQO-1 & MQO-2, we recommend not necessarily to enforce a coverage ratio but
rather to at least share/display the coverage to stakeholders so that they can build trust in
the model or analyze the gap.

References / Types of coverage analysis available on Simulink model:
Examples of - Execution Coverage (EC)

) - Decision Coverage (DC)
techniques - Condition Coverage (CC)

- Modified Condition/Decision Coverage (MCDC)

EC, DC, CC, MCDC, saturation on integer overflow coverage, and relational boundary
coverage can be used to measure the model structural coverage.

Rationale Model coverage enables to identify untested design, untestable design, or unintended
design.
Last update 2.0

3.2.10 Model robustness

MQR-10 Model robustness
Description The model shall be robust in normal and abnormal operating conditions.
Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Mandatory Mandatory
Notes In normal operating condition, inputs and tunable parameters values are within their design
ranges.
In abnormal operating condition, inputs, and tunable parameters values are outside their
design ranges.
Robustness shall prevent errors such as:

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

» J MathWorks'

- Divisions by zero
- Integer overflows
- Out of design range
- Out of bound array
The level of robustness shall be compliant with the software safety integrity level.

References /

- Test generation based on relational boundary coverage
- Formally-based verification technique with abstract interpretation

Examples of - Defensive programming

techniques

Rationale Model robustness verification prevents edge case or incorrect use of model, which can
cause unexpected results or simulation errors.

Last update 2.0

3.2.11 Generated code testing against requirements

MQR-11 Generated code testing against requirements

Description The model generated code shall produce the expected outputs when exercised by tests
derived from and traced to the model higher level requirements

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

level Recommended Mandatory

Notes For MQO-03, tests can be run in software-in-the-loop.

For MQO-04, tests shall be run in processor-in-the-loop. A representative hardware or an
emulator can be used in place of the actual processor.

References /

- Test reuse from component design model testing
- Test generation for back-to-back testing

Examples of

Techniques

Rationale Code testing is required to verify the output of the code generator and compiler or cross-
compiler, linker, load, and flash utilities.
For MQO-3, code testing in software-in-the-loop increases confidence in the code
generator.

Last update 2.0

3.2.12 Generated code compliance with coding standard

MQR-12 Generated code standard compliance

Description The generated code shall be compliant with the coding standard.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Recommended Mandatory

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Notes

The coding standard shall be defined during the project software planning phase and shall
be compatible with the software safety standard, software architecture standard, and
targeted hardware (e.g., floating-point support).

The modeling standard shall anticipate the compliance with the coding standard.

The project coding standard can be tailored for generated code.

References / - MISRA C 2012
- CERTC
Examples of
techniques
Rationale Coding standard verification is required to verify the output of the code generator.
Last update 2.0

3.2.13 Generated code coverage

MQR-13 Generated code coverage

Description The model generated code structure shall be fully covered by all the tests that are derived
from and traced to the model higher level requirements.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

level Recommended Mandatory

Notes The structural coverage criteria shall be at least conformant to the structure coverage

criteria imposed by the software safety integrity level.
The model tests shall be reused to cover the structure of the generated code.

The code coverage can be different than the model coverage depending on the blocks
used (e.g., look-up table interpolation algorithm) or code generation optimization options
(e.g., for loop unrolling).

References /

Types of coverage analysis available on the generated code:

Examples of - Statement Coverage for Code Coverage
) - Condition Coverage for Code Coverage
techniques - Decision Coverage for Code Coverage
- Modified Condition/Decision Coverage (MCDC) for Code Coverage
Rationale Code coverage is required in addition to model coverage to verify that the code generator
do not add unintended functionalities.
Last update 2.0

3.2.14 Generated code robustness

MQR-14

Generated code robustness

Description

The model generated code shall be robust in normal and abnormal operating conditions.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Recommendation
level

MQO-0 MQO-1 MQO-2 MQO-3

Recommended

MQO-4
Mandatory

Notes

In normal operating condition, inputs and tunable parameter values are within their design
ranges.

In abnormal operating condition, inputs and tunable parameter values are outside their
design ranges.

Robustness shall prevent errors such as:

- Divisions by zero
- Integer overflows
- Out of design range
- Out of bound array
The level of robustness shall be compliant with the software safety integrity level.

References /

- Test generation based on relational boundary coverage
- Formally-based verification technique with abstract interpretation

Examples of - Defensive programming

techniques

Rationale Code robustness verification is required to verify the output of the code generator
Last update 2.0

3.2.15 Generated code execution time

MQR-15 Generated code execution time

Description The model generated code running on the production target shall be instrumented to
measure and verify the execution time.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

level Mandatory

Notes Worst case execution time shall be specified during software architectural design phase.

The execution time shall include the generated code and its calling functions (e.g., basic software
services).

The production target can be an emulator or a representative hardware.

The model tests can be reused on the generated code running on the production target
(aka processor-in-the-loop) and the expected outputs shall still be obtained.

References /

- Profiling in processor-in-the-loop from Simulink

Examples of

techniques

Rationale The component software execution time shall be measured prior the component
integration to verify compatibility with architecture requirements, avoid shortage of
hardware resource, and enable reuse of component on different architecture.

Last update 2.0

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

J MathWorks*

3.2.16 Generated code memory footprint

MQR-16 Generated code memory footprint

Description The model generated code memory footprint shall be measured and verified.
Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

level Mandatory
Notes Memory footprint, such as RAM, ROM, and stack, shall be specified during software architectural

design phase. The memory footprint shall include the generated code and its calling functions.

References /

- Stack estimation tool

Examples of - Code generator metrics

techniques

Rationale The component software memory footprint shall be measured prior the component
integration to verify compatibility with architecture requirements, avoid shortage of
hardware resource, and enable reuse of component on different architecture.

Last update 2.0

3.2.17 Model repository

MQR-17 Model repository
Description Each model shall be documented appropriately. In addition to technical documentation, the model
artefacts need to include information related to:

e The developer / maintainer

e The compatible software versions

e The required dependencies

e The lifecycle of the model

e The validation activities that have been performed

e The objectives of the model

e The applicability of the model
Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Mandatory Mandatory Mandatory Mandatory Mandatory
Notes This information can be stored as a separate artefact.

We also recommend using similar repository structures across projects to simplify reuse &
integration.

References /
Examples of

techniques

- Model Identity Card }(MIC)
- Simulation Model Meta Data (SMMD)

1 https://mic.irt-systemx.fr/mic

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://mic.irt-systemx.fr/mic

Rationale This information is required to facilitate model reuse across an organization.
The lifecycle of a model is a duration during which the model is considered to be relevant. Extending
this lifecycle requires a model audit.

Last update 2.0

3.2.18 Artefacts management

MQR-18 Artefacts management

Description A model should be part of a project that gathers all the corresponding artefacts (data,
documentation, metadata, validation artefacts, ..). The lifecycle of the project shall be
managed

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

level Mandatory Mandatory Mandatory Mandatory Mandatory

Notes MATLAB Projects and the Git integration can be used for this purpose.

References /

- MATLAB Projects

- Git / SVN

Examples of

techniques

Rationale Most of the models are not standalone files but a set of files. Having a project gathering all
the artefacts eases model sharing, configuration management as well as maintainability.
As a project can contain different types of models, files can be tagged to apply specific
MQO to specific models.
A MATLAB project usually corresponds to a Git project.

Last update 2.0

3.2.19 Graphical complexity

MQR-19 Graphical complexity

Description A given layer of a model should have from 3 to 10 concepts (7 being optimal). The
concepts being the number of inputs/outputs and the number of components.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

level Recommended |Mandatory Recommended |Recommended |Recommended

Notes

References /
Examples of

techniques

Rationale

In the “Unified theories of cognition” [10][11], Adam Newell states that the brain cannot
manipulate more than 7 ideas simultaneously. While this number might not be the same for

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

all of us, limiting the number of concepts manipulated in a given layer of a model helps
designers, reviewers and other stakeholders to better understand them.

“Concepts” is defined here as something that brings information to the user and has a
semantic meaning. SysML v2 concepts is a non-exhaustive list that can be used as a
starting point (Parts, Attributes, Ports, States, Connections, ..)

Last update 2.0

3.2.20 Model data storage
MQR-20 Model Data Storage

Description Model data storage needs to be anticipated during the planning phase. Each referenced
model needs to have its own data dictionary. The base workspace shall not be used.
Callbacks functions creating data should be avoided.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4
level Mandatory Mandatory Mandatory Mandatory Mandatory
Notes The base workspace should not be used as it’s not protected against data collision.

The model workspace can be used but it does not allow you to store all the information
(e.g., busses), hence the recommendation to use data dictionaries.

References / - Simulink data dictionaries
- Model workspace
Examples of
Techniques
Rationale Data management is often a late concern. Data collisions issues are extremely hard to
debug and separating the data into several files later is also cumbersome.
Last update 2.0

3.2.21 Design pattern duplication

MQR-21 Avoid design pattern duplication.

Description Design pattern duplication (clones and similar clones) shall be detected and replaced to
avoid duplicated data.

Recommendation MQO-0 MQO-1 MQO-2 MQO-3 MQO-4

level Mandatory Mandatory Mandatory Mandatory Mandatory

Notes As a rule, copy & paste should be avoided and replaced by proper componentization

techniques (referenced models, referenced subsystems, libraries, variants).

When 2 components only differ by their parametrization, similar techniques can still be
applied

References / - Clone detector is useful to detect and replace clones and similar clones

Examples of

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

-} MathWorks*

Techniques

Rationale Clones and similar clones grow the model size and introduce potential robustness issues.

Last update 2.0

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

|, MathWorks'

	Revisions
	1 Introduction
	1.1 Abstract
	1.2 Intended Audience
	1.3 Scope
	1.4 Purpose
	1.5 Background and Motivation
	1.6 References
	1.7 Terminology
	1.8 Abbreviations
	1.9 Template
	1.10 Authors

	2 Software Development with Design Models
	2.1 Overview
	2.2 Software planning phase
	2.2.1 Scope definition
	2.2.2 Tools definition
	2.2.3 Standards definition
	2.2.4 MQR identification and allocation
	2.2.5 Strategy to achieve MQO
	2.2.6 MQR conformance demonstration

	2.3 Software requirements phase
	2.3.1 Roles of the functional model
	2.3.2 Main characteristics of the functional model

	2.4 Software architectural design phase
	2.4.1 Role of the architecture model
	2.4.2 Main characteristics of the architecture model

	2.5 Software component design and testing phase
	2.5.1 Role of the component design model
	2.5.2 Main characteristics of the component design model

	2.6 Software component implementation and testing phase
	2.6.1 Role of the component implementation model
	2.6.2 Characteristics of the component implementation model

	2.7 Simulation / co-simulation models
	2.7.1 Role of the simulation / co-simulation models
	2.7.2 Characteristics of the simulation / co-simulation models

	2.8 Relationship between design models

	3 Models Quality
	3.1 Overview
	3.2 Model Quality Requirements
	3.2.1 Model layout
	3.2.2 Model comments
	3.2.3 Model links to requirements
	3.2.4 Model testing against requirements
	3.2.5 Model compliance with modeling standard
	3.2.6 Model data
	3.2.7 Model size
	3.2.8 Model complexity
	3.2.9 Model coverage
	3.2.10 Model robustness
	3.2.11 Generated code testing against requirements
	3.2.12 Generated code compliance with coding standard
	3.2.13 Generated code coverage
	3.2.14 Generated code robustness
	3.2.15 Generated code execution time
	3.2.16 Generated code memory footprint
	3.2.17 Model repository
	3.2.18 Artefacts management
	3.2.19 Graphical complexity
	3.2.20 Model data storage
	3.2.21 Design pattern duplication

