Customize Bitstream Configuration to Meet Resource Use Requirements
This example shows how to deploy a digit recognition network with a target performance of 500 frames per second (FPS) to a Xilinx™ ZCU102 ZU4CG device. The target device resource counts are:
Digital signal processor (DSP) slice count — 240
Block random access memory (BRAM) count — 128
The reference zcu102_int8
bitstream configuration is for a Xilinx ZCU102 ZU9EG device. The default board resource counts are:
Digital signal processor (DSP) slice count — 2520
Block random access memory (BRAM) count — 912
The default board resource counts exceed the resource budget and are on the higher end of the cost spectrum. In this example, you can achieve target performance and resource use budget by quantizing the target deep learning network and customizing the bitstream configuration.
Prerequisites
Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
Deep Learning Toolbox™
Deep Learning HDL Toolbox™
Deep Learning Toolbox Model Quantization Library
Load Pretrained Network
To load the pretrained series network, that has been trained on the Modified National Institute Standards of Technology (MNIST) database, enter:
snet = getDigitsNetwork;
Quantize Network
To quantize the MNIST based digits network, enter:
dlquantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA'); Image = imageDatastore('five_28x28.pgm','Labels','five'); calibrate(dlquantObj,Image);
Retrieve zcu102_int Bitstream Configuration
To retrieve the zcu102_int8
bitstream configuration, use the dlhdl.ProcessorConfig
object. For more information, see dlhdl.ProcessorConfig
. To learn about modifiable parameters of the processor configuration, see getModuleProperty
and setModuleProperty
.
referencehPC = dlhdl.ProcessorConfig('Bitstream','zcu102_int8')
referencehPC = Processing Module "conv" ModuleGeneration: 'on' LRNBlockGeneration: 'off' SegmentationBlockGeneration: 'on' ConvThreadNumber: 64 InputMemorySize: [227 227 3] OutputMemorySize: [227 227 3] FeatureSizeLimit: 2048 Processing Module "fc" ModuleGeneration: 'on' SoftmaxBlockGeneration: 'off' FCThreadNumber: 16 InputMemorySize: 25088 OutputMemorySize: 4096 Processing Module "custom" ModuleGeneration: 'on' Addition: 'on' MishLayer: 'off' Multiplication: 'on' Resize2D: 'on' Sigmoid: 'off' SwishLayer: 'off' TanhLayer: 'off' InputMemorySize: 40 OutputMemorySize: 120 Processor Top Level Properties RunTimeControl: 'register' RunTimeStatus: 'register' InputStreamControl: 'register' OutputStreamControl: 'register' SetupControl: 'register' ProcessorDataType: 'int8' UseVendorLibrary: 'off' System Level Properties TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit' TargetFrequency: 250 SynthesisTool: 'Xilinx Vivado' ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM' SynthesisToolChipFamily: 'Zynq UltraScale+' SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e' SynthesisToolPackageName: '' SynthesisToolSpeedValue: ''
Estimate Network Performance and Resource Utilization for zcu102_int8
Bitstream Configuration
To estimate the performance of the digits series network, use the estimatePerformance
method of the dlhdl.ProcessorConfig
object. The method returns the estimated layer latency, network latency, and network performance in frames per second (Frames/s).
estimatePerformance(referencehPC,dlquantObj)
### An output layer called 'Output1_softmax' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network. ### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' ### The network includes the following layers: 1 'imageinput' Image Input 28×28×1 images with 'zerocenter' normalization (SW Layer) 2 'conv_1' 2-D Convolution 8 3×3×1 convolutions with stride [1 1] and padding 'same' (HW Layer) 3 'relu_1' ReLU ReLU (HW Layer) 4 'maxpool_1' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 5 'conv_2' 2-D Convolution 16 3×3×8 convolutions with stride [1 1] and padding 'same' (HW Layer) 6 'relu_2' ReLU ReLU (HW Layer) 7 'maxpool_2' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 8 'conv_3' 2-D Convolution 32 3×3×16 convolutions with stride [1 1] and padding 'same' (HW Layer) 9 'relu_3' ReLU ReLU (HW Layer) 10 'fc' Fully Connected 10 fully connected layer (HW Layer) 11 'softmax' Softmax softmax (SW Layer) 12 'Output1_softmax' Regression Output mean-squared-error (SW Layer) ### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software. ### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'Output1_softmax' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software. Deep Learning Processor Estimator Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 17886 0.00007 1 2e+04 13977.0 conv_1 4392 0.00002 maxpool_1 2878 0.00001 conv_2 2353 0.00001 maxpool_2 2267 0.00001 conv_3 2652 0.00001 fc 3344 0.00001 * The clock frequency of the DL processor is: 250MHz
To estimate the resource use of the zcu102_int8
bitstream,
use the estimateResources
method of the dlhdl.ProcessorConfig
object. The method returns the estimated DSP slice and BRAM usage.
estimateResources(referencehPC)
Deep Learning Processor Estimator Resource Results DSPs Block RAM* LUTs(CLB/ALUT) ------------- ------------- ------------- Available 2520 912 274080 ------------- ------------- ------------- DL_Processor 804( 32%) 388( 43%) 142494( 52%) * Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices
The estimated performance is 13977 FPS and the estimated resource use counts are:
Digital signal processor (DSP) slice count - 804
Block random access memory (BRAM) count -388
The estimated DSP slice count and BRAM count use exceeds the target device resource budget. Customize the bitstream configuration to reduce resource use.
Create Custom Bitstream Configuration
To create a custom processor configuration, use dlhdl.ProcessorConfig
class. To learn about the modifiable parameters of the processor configuration, see getModuleProperty
and setModuleProperty
.
To reduce the resource use for the custom bitstream, modify the KernelDataType property
for the conv
, fc
, and
adder modules. Modify the ConvThreadNumber
property to reduce DSP slice count. Reduce the InputMemorySize
and OutputMemorySize properties
for the conv
module to reduce the BRAM count.
customhPC = dlhdl.ProcessorConfig; customhPC.ProcessorDataType = 'int8'; customhPC.setModuleProperty('conv','ConvThreadNumber',4); customhPC.setModuleProperty('conv','InputMemorySize',[30 30 1]); customhPC.setModuleProperty('conv','OutputMemorySize',[30 30 1]); customhPC
customhPC = Processing Module "conv" ModuleGeneration: 'on' LRNBlockGeneration: 'off' SegmentationBlockGeneration: 'on' ConvThreadNumber: 4 InputMemorySize: [30 30 1] OutputMemorySize: [30 30 1] FeatureSizeLimit: 2048 Processing Module "fc" ModuleGeneration: 'on' SoftmaxBlockGeneration: 'off' FCThreadNumber: 4 InputMemorySize: 25088 OutputMemorySize: 4096 Processing Module "custom" ModuleGeneration: 'on' Addition: 'on' MishLayer: 'off' Multiplication: 'on' Resize2D: 'off' Sigmoid: 'off' SwishLayer: 'off' TanhLayer: 'off' InputMemorySize: 40 OutputMemorySize: 120 Processor Top Level Properties RunTimeControl: 'register' RunTimeStatus: 'register' InputStreamControl: 'register' OutputStreamControl: 'register' SetupControl: 'register' ProcessorDataType: 'int8' UseVendorLibrary: 'on' System Level Properties TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit' TargetFrequency: 200 SynthesisTool: 'Xilinx Vivado' ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM' SynthesisToolChipFamily: 'Zynq UltraScale+' SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e' SynthesisToolPackageName: '' SynthesisToolSpeedValue: ''
Estimate Network Performance and Resource Utilization for Custom Bitstream Configuration
Estimate the performance of the digits series network for the custom bitstream.
estimatePerformance(customhPC,dlquantObj)
### An output layer called 'Output1_softmax' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network. ### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' ### The network includes the following layers: 1 'imageinput' Image Input 28×28×1 images with 'zerocenter' normalization (SW Layer) 2 'conv_1' 2-D Convolution 8 3×3×1 convolutions with stride [1 1] and padding 'same' (HW Layer) 3 'relu_1' ReLU ReLU (HW Layer) 4 'maxpool_1' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 5 'conv_2' 2-D Convolution 16 3×3×8 convolutions with stride [1 1] and padding 'same' (HW Layer) 6 'relu_2' ReLU ReLU (HW Layer) 7 'maxpool_2' 2-D Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 8 'conv_3' 2-D Convolution 32 3×3×16 convolutions with stride [1 1] and padding 'same' (HW Layer) 9 'relu_3' ReLU ReLU (HW Layer) 10 'fc' Fully Connected 10 fully connected layer (HW Layer) 11 'softmax' Softmax softmax (SW Layer) 12 'Output1_softmax' Regression Output mean-squared-error (SW Layer) ### Notice: The layer 'imageinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software. ### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'Output1_softmax' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software. Deep Learning Processor Estimator Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 403746 0.00202 1 403746 495.4 conv_1 26224 0.00013 maxpool_1 31952 0.00016 conv_2 45120 0.00023 maxpool_2 22409 0.00011 conv_3 269749 0.00135 fc 8292 0.00004 * The clock frequency of the DL processor is: 200MHz
Estimate the resource use of the custom bitstream.
estimateResources(customhPC)
Deep Learning Processor Estimator Resource Results DSPs Block RAM* LUTs(CLB/ALUT) ------------- ------------- ------------- Available 2520 912 274080 ------------- ------------- ------------- DL_Processor 192( 8%) 108( 12%) 56270( 21%) * Block RAM represents Block RAM tiles in Xilinx devices and Block RAM bits in Intel devices
The estimated performance is 494 FPS and the estimated resource use counts are:
Digital signal processor (DSP) slice count - 192
Block random access memory (BRAM) count -108
The estimated resources of the customized bitstream match the user target device resource budget and the estimated performance matches the target network performance.
See Also
dlhdl.ProcessorConfig
| estimatePerformance
| estimateResources