transformPointsInverse
Apply inverse geometric transformation
Syntax
Description
Examples
Apply Inverse Transformation of 2-D Geometric Transformation
Create an affine2d
object that defines the
transformation.
theta = 10; tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1])
tform = affine2d with properties: T: [3x3 double] Dimensionality: 2
Apply forward transformation of 2-D geometric transformation to an input point.
[X,Y] = transformPointsForward(tform,5,10)
X = 6.6605 Y = 8.9798
Apply inverse transformation of 2-D geometric transformation to output point from the previous step to recover the original coordinates.
[U,V] = transformPointsInverse(tform,X,Y)
U = 5.0000 V = 10
Transform Packed Coordinates Using Custom 2-D Transformation
Specify the packed (x,y) coordinates of five input points. The packed coordinates are stored in a 5-by-2 matrix, where the x-coordinate of each point is in the first column, and the y-coordinate of each point is in the second column.
XY = [10 15;11 32;15 34;2 7;2 10];
Define the inverse mapping function. The function accepts and returns points in packed (x,y) format.
inversefn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2)]
inversefn = function_handle with value:
@(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)]
Create a 2-D geometric transform object, tform
, that stores the inverse mapping function.
tform = geometricTransform2d(inversefn)
tform = geometricTransform2d with properties: InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2)] ForwardFcn: [] Dimensionality: 2
Apply the inverse geometric transform to the input points.
UV = transformPointsInverse(tform,XY)
UV = 5×2
25 -5
43 -21
49 -19
9 -5
12 -8
Apply Inverse Transformation of 3-D Geometric Transformation
Create an affine3d
object that defines the
transformation.
tform = affine3d([3 1 2 0;4 5 8 0;6 2 1 0;0 0 0 1])
tform = affine3d with properties: T: [4×4 double] Dimensionality: 3
Apply forward transformation of 3-D geometric transformation to an input point.
[X,Y,Z] = transformPointsForward(tform,2,3,5)
X = 48 Y = 27 Z = 33
Apply inverse transformation of 3-D geometric transformation to output point from the previous step to recover the original coordinates.
[U,V,W] = transformPointsInverse(tform,X,Y,Z)
U = 2.0000 V = 3 W = 5.0000
Transform Packed Coordinates Using Custom 3-D Transformation
Specify the packed (x,y,z) coordinates of five input points. The packed coordinates are stored as a 5-by-3 matrix, where the first, second, and third columns contain the x-, y-, and z- coordinates,respectively.
XYZ = [5 25 20;10 5 25;15 10 5;20 15 10;25 20 15];
Define an inverse mapping function that accepts and returns points in packed (x,y,z) format.
inverseFcn = @(c) [c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2];
Create a 3-D geometric transformation object, tform
, that stores this inverse mapping function.
tform = geometricTransform3d(inverseFcn)
tform = geometricTransform3d with properties: InverseFcn: @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).^2] ForwardFcn: [] Dimensionality: 3
Apply the inverse transformation of this 3-D geometric transformation to the input points.
UVW = transformPointsInverse(tform,XYZ)
UVW = 5×3
30 -20 400
15 5 625
25 5 25
35 5 100
45 5 225
Input Arguments
tform
— Geometric transformation
geometric transformation object
Geometric transformation, specified as a geometric transformation object.
For 2-D geometric transformations, tform
can be a
rigid2d
, affine2d
, projective2d
, geometricTransform2d
, LocalWeightedMeanTransformation2D
, PiecewiseLinearTransformation2D
, or PolynomialTransformation2D
geometric transformation object.
For 3-D geometric transformations, tform
can be an
affine3d
, rigid3d
, or geometricTransform3d
geometric transformation object.
x
— x-coordinates of points to be transformed
m-by-n or
m-by-n-by-p
numeric array
x-coordinates of points to be transformed, specified as
an m-by-n or
m-by-n-by-p
numeric array. The number of dimensions of x
matches
the dimensionality of tform
.
Data Types: single
| double
y
— y-coordinates of points to be transformed
m-by-n or
m-by-n-by-p
numeric array
y-coordinates of points to be transformed, specified as
an m-by-n or
m-by-n-by-p
numeric array. The size of y
must match the size of
x
.
Data Types: single
| double
X
— Coordinates of points to be transformed
l-by-2 or
l-by-3 numeric array
Coordinates of points to be transformed, specified as an
l-by-2 or
l-by-3 numeric array. The number
of columns of X
matches the dimensionality of
tform
.
The first column lists the x-coordinate of each point
to transform, and the second column lists the
y-coordinate. If tform
represents a
3-D geometric transformation, X
has size
l-by-3 and the third column lists
the z-coordinate of the points to transform.
Data Types: single
| double
Output Arguments
u
— x-coordinates of points after transformation
m-by-n or
m-by-n-by-p
numeric array
x-coordinates of points after transformation, returned
as an m-by-n or
m-by-n-by-p
numeric array. The number of dimensions of u
matches
the dimensionality of tform
.
Data Types: single
| double
v
— y-coordinates of points after transformation
m-by-n or
m-by-n-by-p
numeric array
y-coordinates of points after transformation, returned
as an m-by-n or
m-by-n-by-p
numeric array. The size of v
matches the size of
u
.
Data Types: single
| double
w
— z-coordinates of points after transformation
m-by-n-by-p
numeric array
z-coordinates of points after transformation, returned
as an m-by-n-by-p
numeric array. The size of w
matches the size of
u
.
Data Types: single
| double
U
— Coordinates of points after transformation
numeric array
Coordinates of points after transformation, returned as a numeric array.
The size of U
matches the size of
X
.
The first column lists the x-coordinate of each point
after transformation, and the second column lists the
y-coordinate. If tform
represents a
3-D geometric transformation, the third column lists the
z-coordinate of the points after
transformation.
Data Types: single
| double
Version History
See Also
Abrir ejemplo
Tiene una versión modificada de este ejemplo. ¿Desea abrir este ejemplo con sus modificaciones?
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)