# Nonlinear Inductor Characteristics

This example shows a comparison of nonlinear inductor behavior for different parameterizations. Starting with fundamental parameter values, the parameters for linear and nonlinear representations are derived. These parameters are then used in a Simscape™ model and the simulation outputs compared.

### Specification of Parameters

Fundamental parameter values used as the basis for subsequent calculations:

• Permeability of free space, • Relative permeability of core, • Number of winding turns, • Effective magnetic core length, • Effective magnetic core cross-sectional area, • Core saturation begins, • Core fully saturated, mu_0 = pi*4e-7; mu_r = 3000; Nw = 10; le = 0.032; Ae = 1.6e-5; B_sat_begin = 0.75; B_sat = 1.5; 

### Calculate Magnetic Flux Density and Magnetic Field Strength Data

Where:

• Magnetic flux density, • Magnetic field strength, Linear representation:

• Nonlinear representation (including coefficient, a):

• % Use linear representation to find value of H corresponding to B_sat_begin H_sat_begin = B_sat_begin/(mu_0*mu_r); % Rearrange nonlinear representation to calculate coefficient, a a = atanh( B_sat_begin/B_sat )/H_sat_begin; % Linear representation H_linear = [-500 500]; B_linear = mu_0*mu_r*H_linear; % Nonlinear representation H_nonlinear = -5*H_sat_begin:H_sat_begin:5*H_sat_begin; B_nonlinear = B_sat*tanh(a*H_nonlinear); 

### Display Magnetic Flux Density Versus Magnetic Field Strength

The linear and nonlinear representations can be overlaid.

figure,plot( H_linear, B_linear, H_nonlinear, B_nonlinear ); grid( 'on' ); title( 'Magnetic flux density, B, versus Magnetic field strength, H' ); xlabel( 'Magnetic field strength, H (A/m)' ); ylabel( 'Magnetic flux density, B (T)' ); legend( 'B=\mu_0 \mu_r H', 'B-H curve', 'Location', 'NorthWest' ) ### Calculate Magnetic Flux and Current Data

Where:

• Magnetic flux, • Current, Linear representation:

• • Nonlinear representation:

• • % Linear inductance L_linear = mu_0*mu_r*Ae*Nw^2/le; % Linear representation I_linear = [-1.5 1.5]; phi_linear = I_linear.*L_linear/Nw; % Nonlinear representation I_nonlinear = le.*H_nonlinear./Nw; phi_nonlinear = B_nonlinear.*Ae; 

### Display Magnetic Flux Versus Current

The linear and nonlinear representations can be overlaid.

figure, plot( I_linear, phi_linear, I_nonlinear, phi_nonlinear ); grid( 'on' ); title( 'Magnetic flux, \phi, versus current, I' ); xlabel( 'Current, I (A)' ); ylabel( 'Magnetic flux, \phi (Wb)' ); legend( '\phi=I L/N_w', '\phi-I curve', 'Location', 'NorthWest' ); ### Use Parameters in Simscape Model

The parameters calculated can now be used in a Simscape model. Once simulated, the model is set to create a Simscape logging variable, simlog.

modelName = 'ee_nonlinear_inductor'; open_system( modelName ); sim( modelName ); ### Conclusion

The state variable for all representations is magnetic flux, . Current, I, and magnetic flux, , can be obtained from the Simscape logging variable, simlog, for each representation. Overlaying the simulation results from the representations permits direct comparison.

figure, plot( ... simlog.Linear_Inductor.inductor.i.series.values,... simlog.Linear_Inductor.inductor.phi.series.values,... simlog.B_vs_H.inductor.i.series.values,... simlog.B_vs_H.inductor.phi.series.values,... simlog.phi_vs_I.inductor.i.series.values,... simlog.phi_vs_I.inductor.phi.series.values,... 'o'... ); grid( 'on' ); title( 'Magnetic flux, \phi, versus current, I' ); xlabel( 'Current, I (A)' ); ylabel( 'Magnetic flux, \phi (Wb)' ); legend( 'Linear (single inductance)', 'B-H characteristic', '\phi-I characteristic', 'Location', 'NorthWest' ); 