Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

oobLoss

Error de clasificación fuera de bolsa

Sintaxis

L = oobloss(ens)
L = oobloss(ens,Name,Value)

Descripción

L = oobloss(ens) Devuelve el error de clasificación calculado para los datos fuera de la bolsa.ens

L = oobloss(ens,Name,Value) calcula el error con opciones adicionales especificadas por uno o más argumentos de par.Name,Value Puede especificar varios argumentos de par nombre-valor en cualquier orden como.Name1,Value1,…,NameN,ValueN

Argumentos de entrada

ens

Un conjunto de clasificación en bolsas, construido con.fitcensemble

Argumentos de par nombre-valor

Especifique pares de argumentos separados por comas opcionales. es el nombre del argumento y es el valor correspondiente. deben aparecer dentro de las cotizaciones.Name,ValueNameValueName Puede especificar varios argumentos de par de nombre y valor en cualquier orden como.Name1,Value1,...,NameN,ValueN

'learners'

Índices de estudiantes débiles en el conjunto que van desde. solo usa estos alumnos para calcular la pérdida.1NumTrainedoobLoss

Predeterminado: 1:NumTrained

'lossfun'

Función de pérdida, especificada como el par separado por comas que consta de y un identificador de función o nombre de función de pérdida integrado.'LossFun'

  • La tabla siguiente enumera las funciones de pérdida disponibles. Especifique uno utilizando su vector de caracteres correspondiente o escalar de cadena.

    ValorDescripción
    'binodeviance'Desviación binomial
    'classiferror'Error de clasificación
    'exponential'Exponencial
    'hinge'Bisagra
    'logit'Logística
    'mincost'Costo mínimo previsto de clasificación errónea (para puntuaciones de clasificación que son probabilidades posteriores)
    'quadratic'Cuadrática

    es adecuada para las puntuaciones de clasificación que son probabilidades posteriores.'mincost' Los conjuntos enroscada devuelven las probabilidades posteriores como puntuaciones de clasificación por defecto.

  • Especifique su propia función utilizando la notación de identificador de función.

    Supongamos que es el número de observaciones en y ser el número de clases distintas (, es el modelo de entrada).nXKnumel(ens.ClassNames)ens La función debe tener esta firma

    lossvalue = lossfun(C,S,W,Cost)
    Dónde:

    • El argumento de salida es un escalar.lossvalue

    • Elija el nombre de la función (lossfun).

    • es una matriz lógica con filas que indican a qué clase pertenece la observación correspondiente.CnK El orden de las columnas corresponde al orden de la clase.ens.ClassNames

      Construya estableciendo si la observación está en la clase, para cada fila.CC(p,q) = 1pq Establezca todos los demás elementos de la fila en.p0

    • es una matriz numérica de puntuaciones de clasificación.SnK El orden de las columnas corresponde al orden de la clase. es una matriz de puntuaciones de clasificación, similar a la salida de.ens.ClassNamesSPredecir

    • es un vector numérico de pesos de observación de-por-1.Wn Si pasa, el software los normaliza para sumar.W1

    • es una matriz numérica de costes de clasificación errónea.CostoKK Por ejemplo, especifica un coste para la clasificación correcta y para la clasificación errónea.Cost = ones(K) - eye(K)01

    Especifique la función mediante 'LossFun',@lossfun.

Para obtener más información sobre las funciones de pérdida, consulte.Pérdida de clasificación

Predeterminado: 'classiferror'

'mode'

Vector de caracteres o escalar de cadena que representa el significado de la salida:L

  • — es un valor escalar, la pérdida para todo el conjunto.'ensemble'L

  • : es un vector con un elemento por alumno entrenado.'individual'L

  • : es un vector en el que el elemento se obtiene mediante el uso de alumnos de la lista de entrada de alumnos.'cumulative'LJ1:J

Predeterminado: 'ensemble'

Argumentos de salida

L

de las observaciones fuera de bolsa, un escalar. puede ser un vector, o puede representar una cantidad diferente, dependiendo de la configuración de nombre-valor.La pérdida de clasificaciónL

Ejemplos

expandir todo

Cargue el conjunto de datos de iris de Fisher.

load fisheriris

Cultivar una bolsa de 100 árboles de clasificación.

ens = fitcensemble(meas,species,'Method','Bag');

Calcule el error de clasificación fuera de bolsa.

L = oobLoss(ens)
L = 0.0467 

Más acerca de

expandir todo

Consulte también

| | |