ReconstructionICA
Feature extraction by reconstruction ICA
Description
ReconstructionICA applies reconstruction
independent component analysis (RICA) to learn a transformation that maps input
predictors to new predictors.
Creation
Create a ReconstructionICA object by using the
rica function.
Properties
This property is read-only.
Fitting history, returned as a structure with two fields:
Iteration— Iteration numbers from 0 through the final iteration.Objective— Objective function value at each corresponding iteration. Iteration 0 corresponds to the initial values, before any fitting.
Data Types: struct
This property is read-only.
Initial feature transformation weights, returned as a
p-by-q matrix, where p is the number of predictors passed in X and
q is the number of features that you want. These weights are the
initial weights passed to the creation function. The data type is single when the
training data X is single.
Data Types: single | double
This property is read-only.
Parameters for training the model, returned as a structure. The structure
contains a subset of the fields that correspond to the rica name-value pairs that were
in effect during model creation:
IterationLimitVerbosityLevelLambdaStandardizeContrastFcnGradientToleranceStepTolerance
For details, see the rica
Name,Value pairs.
Data Types: struct
This property is read-only.
Predictor means when standardizing, returned as a
p-by-1 vector. This property is nonempty when
the Standardize name-value pair is
true at model creation. The value is the vector of predictor
means in the training data. The data type is single when the training data
X is single.
Data Types: single | double
This property is read-only.
Non-Gaussianity of sources, returned as a length-q
vector of ±1.
NonGaussianityIndicator(k) = 1meansricamodels thekth source as sub-Gaussian.NonGaussianityIndicator(k) = -1meansricamodels thekth source as super-Gaussian, with a sharp peak at 0.
Data Types: double
This property is read-only.
Number of output features, returned as a positive integer. This value is
the q argument passed to
the creation function, which is the requested number of features to
learn.
Data Types: double
This property is read-only.
Number of input predictors, returned as a positive integer. This value is
the number of predictors passed in X to the creation
function.
Data Types: double
This property is read-only.
Predictor standard deviations when standardizing, returned as a
p-by-1 vector. This property is nonempty when
the Standardize name-value pair is
true at model creation. The value is the vector of predictor
standard deviations in the training data. The data type is single when the training data
X is single.
Data Types: single | double
This property is read-only.
Feature transformation weights, returned as a
p-by-q matrix, where p is the number of predictors passed in X and
q is the number of features that you want. The data type is
single when the training data X is single.
Data Types: single | double
Object Functions
transform | Transform predictors into extracted features |
Examples
Create a ReconstructionICA object by using the rica function.
Load the SampleImagePatches image patches.
data = load('SampleImagePatches');
size(data.X)ans = 1×2
5000 363
There are 5,000 image patches, each containing 363 features.
Extract 100 features from the data.
rng default % For reproducibility q = 100; Mdl = rica(data.X,q,'IterationLimit',100)
Warning: Solver LBFGS was not able to converge to a solution.
Mdl =
ReconstructionICA
ModelParameters: [1×1 struct]
NumPredictors: 363
NumLearnedFeatures: 100
Mu: []
Sigma: []
FitInfo: [1×1 struct]
TransformWeights: [363×100 double]
InitialTransformWeights: []
NonGaussianityIndicator: [100×1 double]
Properties, Methods
rica issues a warning because it stopped due to reaching the iteration limit, instead of reaching a step-size limit or a gradient-size limit. You can still use the learned features in the returned object by calling the transform function.
Version History
Introduced in R2017a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)