get rid of series that contain useless values

2 visualizaciones (últimos 30 días)
Christos Papagrigoriou
Christos Papagrigoriou el 9 de Dic. de 2021
Editada: Adam Danz el 15 de Dic. de 2021
Hello,
I have imported a table in a script and I want to create a loop that deletes all the series in the table that contain cells with 'Not collected' and 'Unknown Values'. The code that currently use is
data0= readtable('NSCLCR01Radiogenomic_DATA_LABEL.csv');
data1=data0(:,[3,5,7,18,25,26,27,28,29,30,31,32]);
data1(49,:) = [];
for i = 1: width(data1)
for j = 1:12
s1 = data1(i,j);
s2 = 'Not collected';
s3 = 'Unknown';
tf = strcmp(s1,s2);
tf2 = strcmp(s1,s3) ;
if tf == 1 || tf2 == 1 ;
else
newdata(i,j) = data1(i,j)
end
end
end
newdata(~cellfun('isempty',R))
but it does not seem to gimme back the desirable results.
cheersxxx
  2 comentarios
Adam Danz
Adam Danz el 9 de Dic. de 2021
Do you want to delete rows or columns that contain those key words?
BTW, the file you uploaded is xlsx (to csv) and contains only 17 columns but your code is looking for up to 32 columns.
Christos Papagrigoriou
Christos Papagrigoriou el 9 de Dic. de 2021
hello, rows that contain those words.
ps: Yh my original csv was pretty big that is the reason why I made it a little smaller ( refer to line 2) just to keep what i actually want.
cheers

Iniciar sesión para comentar.

Respuesta aceptada

Adam Danz
Adam Danz el 9 de Dic. de 2021
Editada: Adam Danz el 15 de Dic. de 2021
  1. Load the data
  2. use varfun to determine which columns of the table are cell-strings or strings
  3. use ismember find a list of key words ("not collected", "unknown", etc). This code ignores case.
  4. Use indexing and any to eliminate any row that contains a key word.
data0= readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/828830/NSCLCR01Radiogenomic_DATA_LABEL.xlsx');
Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.
isstr = varfun(@(c)iscellstr(c)||isstring(c), data0,'OutputFormat','uniform');
nullKeys = {'Not collected', 'Unknown'}; % not case sensitive; add more as needed
dataStr = data0{:, isstr};
isnull = ismember(lower(dataStr), lower(nullKeys));
% Remove rows of table that contains a null indicator
rowContainsNull = any(isnull,2);
data0(rowContainsNull, :) = []
data0 = 150×17 table
CaseID PatientAffiliation AgeAtHistologicalDiagnosis Var4 Gender Var6 SmokingStatus Var8 Histology Var10 EGFRMutationStatus KRASMutationStatus ALKTranslocationStatus AdjuvantTreatment Chemotherapy Radiation Recurrence ___________ __________________ __________________________ ____ __________ ____ _____________ ____ __________________ _____ __________________ __________________ ______________________ _________________ ____________ _________ __________ {'AMC-001'} {'Stanford'} 34 NaN {'Male' } NaN {'Nonsmoker'} NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Mutant' } {'Wildtype'} {'No' } {'No' } {'No'} {'yes'} {'AMC-003'} {'Stanford'} 69 NaN {'Female'} NaN {'Nonsmoker'} NaN {'Adenocarcinoma'} NaN {'Mutant' } {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-004'} {'Stanford'} 80 NaN {'Female'} NaN {'Nonsmoker'} NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-005'} {'Stanford'} 76 NaN {'Male' } NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Mutant' } {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'yes'} {'AMC-009'} {'Stanford'} 61 NaN {'Male' } NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Mutant' } {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-010'} {'Stanford'} 42 NaN {'Female'} NaN {'Nonsmoker'} NaN {'Adenocarcinoma'} NaN {'Mutant' } {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-011'} {'Stanford'} 66 NaN {'Female'} NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Mutant' } {'Wildtype'} {'Yes'} {'Yes'} {'No'} {'yes'} {'AMC-012'} {'Stanford'} 70 NaN {'Female'} NaN {'Nonsmoker'} NaN {'Adenocarcinoma'} NaN {'Mutant' } {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'yes'} {'AMC-013'} {'Stanford'} 67 NaN {'Female'} NaN {'Nonsmoker'} NaN {'Adenocarcinoma'} NaN {'Mutant' } {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-014'} {'Stanford'} 78 NaN {'Female'} NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-016'} {'Stanford'} 65 NaN {'Male' } NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-018'} {'Stanford'} 69 NaN {'Female'} NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-020'} {'Stanford'} 61 NaN {'Female'} NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Wildtype'} {'Wildtype'} {'Yes'} {'Yes'} {'No'} {'no' } {'AMC-021'} {'Stanford'} 78 NaN {'Female'} NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Wildtype'} {'Mutant' } {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-022'} {'Stanford'} 77 NaN {'Female'} NaN {'Former' } NaN {'Adenocarcinoma'} NaN {'Mutant' } {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' } {'AMC-023'} {'Stanford'} 76 NaN {'Female'} NaN {'Nonsmoker'} NaN {'Adenocarcinoma'} NaN {'Mutant' } {'Wildtype'} {'Wildtype'} {'No' } {'No' } {'No'} {'no' }
Or, if you want to remove columns with key words,
% Remove cols of table that contains a null indicator
colContainsNull = any(isnull,1);
tblColIdx = ismember(cumsum(isstr) .* isstr, find(colContainsNull));
data0(:, tblColIdx) = []

Más respuestas (0)

Categorías

Más información sobre Tables en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by