Speeding up lsqlin to find the base of a matrix
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Tintin Milou
el 4 de Ag. de 2022
Comentada: Bruno Luong
el 7 de Ag. de 2022
Hello,
I have to solve the following problem over and over again for slightly different values of mu.
n = lsqlin(mu-eye(J),zeros(J,1),[],[],ones(1,J),1,[],[],[]);
The matrix mu has columns sum up to 1, values are between zero and 1 and the diagonal elements are typically above 0.9. There are only very few 0 elements in mu (although many of them are 'close' to 0, e.g. 1e-4). J is equal to 400.
You can do the same calculation using
n = null(mu-eye(J),1e-10);
n = n/sum(n);
but that's not any faster. Are there any ideas on how to speed that up? Since the solution n does not change much in the various calls, I thought about providing an initial guess, but the interior algorithm does not accept any initial guesses.
Here's a sample matrix (with J=5)
0.980472260884484 0.0169062020634941 1.31828882462499e-05 0.00712276192859210 0.00734667253541008
0.0122127547484456 0.972782440495672 1.15814051875989e-05 0.00808693210831310 0.00830831290909974
3.60311943991737e-08 4.68217920214649e-08 0.999953080612125 1.05940998862873e-07 3.71871063642989e-05
0.00445881693357994 0.00660554154798086 1.18490160022582e-05 0.976444331730883 0.0148592752450766
0.00285613140229620 0.00370576907106219 1.03060784389177e-05 0.00834586829121426 0.969448552204049
Thanks!
3 comentarios
John D'Errico
el 4 de Ag. de 2022
There are at least a couple of other ways I could describe to solve for the null space of a matrix. It would be easier if you would provide a sample matrix to play with, and compare methods, without needing to describe in detail how to solve it for each method.
Respuesta aceptada
Bruno Luong
el 4 de Ag. de 2022
Can you try this:
A = mu-eye(size(A));
[Q,R,p] = qr(A,'vector');
n = [R(1:end-1,1:end-1)\R(1:end-1,end); -1];
n(p) = n/sum(n)
10 comentarios
Bruno Luong
el 7 de Ag. de 2022
Thanks for the update. It is puzzled me that the outer loop is that sensitive to numerical error.
Más respuestas (0)
Ver también
Categorías
Más información sobre Linear Least Squares en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!