How can I find all possible solutions to a LP?
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Arjun M
el 23 de Ag. de 2022
Editada: Bruno Luong
el 23 de Ag. de 2022
I have a LP with 4 variables and 12 constriants. How can I get all the possible solutions to this problem? I would ideally like to get them in the form of a matrix or arrays.
Another part of this is, how can I get the extreme points of a convex hull using MATLAB? If there are 4 lines and they form a convex hull, how can I get the extreme points of this?
Thank you for any help.
0 comentarios
Respuesta aceptada
Matt J
el 23 de Ag. de 2022
Editada: Matt J
el 23 de Ag. de 2022
If the convex hull is a bounded polyhedron, you can use lcon2vert from,
to get its vertices.
To find all possible optimal solutions, you must evaluate the objective function at all the vertices. The set of all possible solutions will be the convex hull of the optimal vertices.
5 comentarios
Bruno Luong
el 23 de Ag. de 2022
Editada: Bruno Luong
el 23 de Ag. de 2022
@Arjun M As written b does not have lower bounds, so the admissibles set is unbounded.
Such set cannot be characterized fully by the vertexes (what you ask), and until you provide the cost gradient f the request of all possible solutions is not possible.
And the question has non sense for a computer to enumerate : the LP either has 0, one solution or inifity solution. Indeed if there are two or more distinct solutions then all the points in the convex combination are solutions, so the set is ininity, impossible to enumerate them.
Más respuestas (0)
Ver también
Categorías
Más información sobre Computational Geometry en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!