How to remove outliers before prediction
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Dears, I want to predict current End value based current Start values using previous historical data as I have shown below. I am using the below mention code, but I want to remove outlier if the start (or end) value >=0.28 (or if you have some better idea like if R2 is <0.9, and to make it 0.98 or more by removing suitable outliers). Please suggest me how can I remove outlier(s).
data = [0.25 0.256
0.24 0.24
0.29 0.33
0.224 0.24
0.26 0.27
0.24 0.26
0.26 0.31
0.29 0.34];
clc;
clear all;
scatter(data(:, 1), data(:, 2));
polystartend = polyfit(data(:,1), data(:, 2), 1);
todaystart = 21;
todayend = polyval(polystartend, todaystart)
Many many thanks in advance,
0 comentarios
Respuestas (1)
the cyclist
el 26 de Feb. de 2015
Editada: the cyclist
el 26 de Feb. de 2015
Here is a technical way to remove the outliers based on your suggestion:
removeIdx = any(data >= 0.28,2);
data(removeIdx,:) = [];
The identification of outliers is a rich and complex subject. Iglewicz and Hoaglin have written a 90-page book on the subject.
8 comentarios
Image Analyst
el 28 de Feb. de 2015
Maybe...
R = corrcoef(data(:,1), data(:,2))
R2 = R(1,2)^2
Ver también
Categorías
Más información sobre Fit Postprocessing en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!