Time derivative of parameters within ODE solvers

4 visualizaciones (últimos 30 días)
Seyed Ali Baradaran Birjandi
Seyed Ali Baradaran Birjandi el 22 de Nov. de 2018
Editada: Torsten el 23 de Nov. de 2018
I have an ODE which has a parameter whose 1st and 2nd order time derivatives are also included in the ODE:
function dy = ODE(t,y)
f1 = myfun(y(t));
dy = y + f1 + df1/dt + ddf1/dt^2;
end
Unfortunately, the function of analytical derivatives of myfun is not available. Therefore, df1 and ddf1 can be computed numerically, only. Given that the time step in Matlab ode solvers is not fixed, I wonder if there is a way to numerically compute df1 and ddf1.

Respuesta aceptada

Torsten
Torsten el 23 de Nov. de 2018
Editada: Torsten el 23 de Nov. de 2018
function dy = ODE(t,y)
dt = 1e-8;
fm = myfun(t-dt);
f = myfun(t);
fp = myfun(t+dt);
df = (fp - fm) / (2 * dt);
ddf = (fp - 2 * f + fm) / dt^2;
dy = y + f + df + ddf;
end
  6 comentarios
Seyed Ali Baradaran Birjandi
Seyed Ali Baradaran Birjandi el 23 de Nov. de 2018
It depends on y only, i.e: y^2.
Torsten
Torsten el 23 de Nov. de 2018
Editada: Torsten el 23 de Nov. de 2018
Let
z = f(y)
the value that "myfun" returns for argument y.
Then
dz/dt = df/dy * dy/dt
d^2z/dt^2 = d^2f/dy^2 * (dy/dt)^2 + df/dy * d^2y/dt^2
Inserting into your differential equation gives
dy/dt = y + f + df/dy * dy/dt + d^2f/dy^2 * (dy/dt)^2 + df/dy * d^2y/dt^2
or
df/dy * d^2y/dt^2 + (df/dy - 1) * dy/dt + d^2f/dy^2 * (dy/dt)^2 + y + f = 0
Now you can approximate df/dy and d^2f/dy^2 as I suggested above and solve the system (z1 = y, z2 = dy/dt)
z1' = z2
z2' = -((df/dy - 1) * z2 + d^2f/dy^2 * (z2)^2 + z1 + f)/(df/dy)
using ODE45, e.g.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by