how to generate permutations of N numbers in K positions

107 visualizaciones (últimos 30 días)
Ali Danish
Ali Danish el 19 de Feb. de 2019
Comentada: Subzero el 31 de Mzo. de 2023
I want to generate all permutations of N numbers in K places, where K is less than N (nPk) in matlab, I've searched online and already existing questions but couldn't find a functions which generates such permutations without repitition. There are some functions which do this with repitation.
For example if I've a vector [1 2 3 4] my N is 4 and my K is 2, then I want 12 permutations using the formula N!/(N-K)1 = 4!/(4-2)! = 12
[1,2]
[1,3]
[1,4]
[2,1]
[2,3]
[2,4]
[3,1]
[3,2]
[3,3]
[4,1]
[4,2]
[4,3]
These are the permutations which I want to generate. Kindly suggest me the solution.

Respuesta aceptada

Stephen23
Stephen23 el 19 de Feb. de 2019
Editada: Stephen23 el 19 de Feb. de 2019
Download Loginatorist's powerful FEX submission combinator:
and use it like this:
>> sortrows(combinator(4,2,'p'))
ans =
1 2
1 3
1 4
2 1
2 3
2 4
3 1
3 2
3 4
4 1
4 2
4 3
If you want to apply this to a vector that is not 1:N, simply use the output of combinator as indices into your vector.

Más respuestas (2)

Bruno Luong
Bruno Luong el 22 de Mzo. de 2021
Editada: Bruno Luong el 22 de Mzo. de 2021
No loop, no extrenal file needed
N=5; K=3;
P=nchoosek(1:N,K);
P=reshape(P(:,perms(1:K)),[],K)
P = 60×3
3 2 1 4 2 1 5 2 1 4 3 1 5 3 1 5 4 1 4 3 2 5 3 2 5 4 2 5 4 3
You might further sort the permutation so that the order is easily to follow
P = sortrows(P)
P = 60×3
1 2 3 1 2 4 1 2 5 1 3 2 1 3 4 1 3 5 1 4 2 1 4 3 1 4 5 1 5 2
  4 comentarios
Walter Roberson
Walter Roberson el 24 de Nov. de 2022
If you have an array P that is 2 or more dimensions (not a vector!), and you use P(A,B) where A and B might be arrays, then the result is the same as if you had used P(A(:), B(:)) -- so P(A(1),B(1)), P(A(2),B(1)), P(A(3),B(1)) up to P(A(end),B(1)) is the first column, then the second column would be P(A(1),B(2)), P(A(2),B(2)), P(A(3),B(2)) to P(A(end),B(2)), and so on -- all combinations of the elements in A with all of the elements in B, same as if A and B had been vectors rather than 2D arrays.
The shape of the result might be different if P is a vector instead of a 2D array.
Subzero
Subzero el 31 de Mzo. de 2023
Thanks for explaining that. I get it now.

Iniciar sesión para comentar.


Sergey Kasyanov
Sergey Kasyanov el 22 de Mzo. de 2021
Hello!
Use nchoosek function with combination of perms function. That solution is slow but does not require any side files.
res = nchoosek(1:4, 2);
for i = 1:size(res,1)
res = [res; perms(res(i,:))];
end
res = unique(res, 'rows');

Categorías

Más información sobre Discrete Math en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2013b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by