Following is the error while calculating cosine distance
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Balaji M. Sontakke
el 9 de Abr. de 2019
Comentada: Balaji M. Sontakke
el 11 de Abr. de 2019
Following is the error while calculating cosine distance....
Conversion to cell from double is not possible.
Error in CosineDistance (line 26)
Distance(ctr) = - (ClientMean(i,:)'*EvalSet(j,:))/(norm_x*norm_y);
Error in Evaluation (line 83)
Distance = CosineDistance(ClientMean, EvalSet);
Error in DorsalHandVeinVerification (line 69)
[EvalFAR, EvalFRR, EvalEER, Thr] = Evaluation(TrainSet, gndTrain, EvalSet, gndEval,
options);
function Distance = CosineDistance(ClientMean, EvalSet) % function definition
% Calculate Cosine Distance
%
% Inputs:
% ClientSet ---- c* dim matrix
% EvalSet ---- n*dim matrix
% Outputs:
% Distance ---- c*n matrix
if ~exist('ClientMean','var')
error('Input arguments error.');
end
if ~exist('EvalSet','var')
error('Input arguments error.');
end
[c, d] = size(ClientMean);
[n, dim] = size(EvalSet);
if (d ~= dim)
error('Dimensionality disagreement.');
end
Distance=cell(c,n); % pre-allocate
ctr=1;
for i = 1 : c
for j = 1 : n
norm_x = norm(ClientMean);
norm_y = norm(EvalSet);
Distance(ctr) = - (ClientMean(i,:)'*EvalSet(j,:))/(norm_x*norm_y);
ctr=ctr+1;
end
end
end
0 comentarios
Respuesta aceptada
KSSV
el 9 de Abr. de 2019
Editada: KSSV
el 9 de Abr. de 2019
cell is accessed using flower braces i.e {}. Replace Distance(ctr) with Distance{ctr}.
function Distance = CosineDistance(ClientMean, EvalSet) % function definition
% Calculate Cosine Distance
%
% Inputs:
% ClientSet ---- c* dim matrix
% EvalSet ---- n*dim matrix
% Outputs:
% Distance ---- c*n matrix
if ~exist('ClientMean','var')
error('Input arguments error.');
end
if ~exist('EvalSet','var')
error('Input arguments error.');
end
[c, d] = size(ClientMean);
[n, dim] = size(EvalSet);
if (d ~= dim)
error('Dimensionality disagreement.');
end
Distance=cell(c,n); % pre-allocate
ctr=1;
for i = 1 : c
for j = 1 : n
norm_x = norm(ClientMean);
norm_y = norm(EvalSet);
Distance{ctr} = - (ClientMean(i,:)'*EvalSet(j,:))/(norm_x*norm_y);
ctr=ctr+1;
end
end
end
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre NaNs en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!