PCA expansion random variables

2 visualizaciones (últimos 30 días)
Jaime  de la Mota
Jaime de la Mota el 12 de Jun. de 2019
Editada: Adam el 12 de Jun. de 2019
Hello everyone.
Right now I am applying PCA to a set of observations. [coeffUV, score_vectorUV, latentUV, tsquaredUV, explainedUV, muUV]=pca(Z, 'Centered',false); being Z a gaussian correlation kernel.
As far as I understand, Score columns are the eigenfunctions. I have read in some books that if one multiplies the eigenfunctions (columns of score) by the origninal matrix data, gaussian random variables are obtained. Hower, if I write randvar=Z*score(:,1); and hist(randvar) I don't get a Gaussian histogram.
Can someone tell me what I am doing wrong?
Thanks.
  1 comentario
Adam
Adam el 12 de Jun. de 2019
Editada: Adam el 12 de Jun. de 2019
The columns of the coeff output are the eigenvectors, as explained in
doc pca

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by