How can I design multi layer perceptron based neural network(2 hidden layers) for my data.
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
PRAKHAR GANDHI
el 15 de Sept. de 2019
Comentada: S NISHANTH
el 29 de Mayo de 2020
Data consists of 72 features as columns,2148 rows, and last column as class labels as 0 and 1.
1 comentario
Respuesta aceptada
Raunak Gupta
el 18 de Sept. de 2019
Hi,
Since you are trying to implement a Multi-Layer Perceptron, It is recommended to use fullyConnectedlayer as this connect all the nodes in one layer to the previous and next layer. The input size can be specified as 72 which is the number of features. The rows in the data matrix can be split into test data and train data. For full workflow, there is an example here by ignoring convolution2dLayer, maxPooling2dLayer and mentioning imageInputLayer with appropriate size as the number of features.
You may use Neural Netwrok Pattern Recognition App as an interactive alternative for solving classification and regression-based problem in Neural Networks.
Más respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!