Which Right Eigenvector to report?

1 visualización (últimos 30 días)
AHMAD KHUSYAIRI CHE RUSLI
AHMAD KHUSYAIRI CHE RUSLI el 23 de Dic. de 2019
Comentada: Ridwan Alam el 30 de En. de 2020
%%Using the data below, what is right eigenvector for A? If V1 0.5662 0.2168 -0.8347, which one is right eigenvector? how about V2 and V3?
>> A=[0 -1 2 ; 5 0 4 ; 7 -2 0];
[V,D,W]=eig(A)
v1=V(1:end,1)
v2=V(1:end,2)
v3=V(1:end,3)
V =
0.5062 + 0.0000i -0.1323 - 0.2072i -0.1323 + 0.2072i
0.2168 + 0.0000i -0.8538 + 0.0000i -0.8538 + 0.0000i
-0.8347 + 0.0000i -0.2323 - 0.3959i -0.2323 + 0.3959i
D =
-3.7259 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.8630 + 3.0679i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 1.8630 - 3.0679i
W =
0.8860 + 0.0000i 0.7895 + 0.0000i 0.7895 + 0.0000i
-0.0111 + 0.0000i -0.2759 - 0.3553i -0.2759 + 0.3553i
-0.4636 + 0.0000i 0.4072 - 0.0923i 0.4072 + 0.0923i
v1 =
0.5062
0.2168
-0.8347
v2 =
-0.1323 - 0.2072i
-0.8538 + 0.0000i
-0.2323 - 0.3959i
v3 =
-0.1323 + 0.2072i
-0.8538 + 0.0000i
-0.2323 + 0.3959i
>>

Respuestas (2)

Ridwan Alam
Ridwan Alam el 23 de Dic. de 2019
Editada: Ridwan Alam el 30 de En. de 2020
I assume you meant 'right' as opposed to 'left' eigen vectors.
[V,D] = eig(A); % to get left eigenvectors, [V,D,W] = eig(A), here W has the left eigen vectors
% right eigen vectors and eigen values
V1 = V(:,1); D1 = D(1,1);
V2 = V(:,2); D2 = D(2,2);
V3 = V(:,3); D3 = D(3,3);
V1, V2, and V3 are the right eigen vectors of A, as
A*V1 - V1*D1 % is very small, near zero
A*V2 - V2*D2 % is very small, near zero
A*V3 - V3*D3 % is very small, near zero
Hope this helps.
  2 comentarios
AHMAD KHUSYAIRI CHE RUSLI
AHMAD KHUSYAIRI CHE RUSLI el 30 de En. de 2020
Editada: AHMAD KHUSYAIRI CHE RUSLI el 30 de En. de 2020
Hi Ridwan Alam. Thanks for the answer. But, I little bit confuse when I discuss with my friend, is it D1 = -3.7259? So what is v1 =v(:,1)? Because Im looking for single value, for example right eigenvalue for V= 3.2 ,D=0.6, W= 2.1 or i failed to understand the concept?
Ridwan Alam
Ridwan Alam el 30 de En. de 2020
Hi Ahmad, the eigen value is a scalar "value", but the eigen vectors are "vectors".
Here, D1 is your eigen VALUE (scalar) for the corresponding eigen VECTOR V1.
Hope this makes sense.

Iniciar sesión para comentar.


Christine Tobler
Christine Tobler el 6 de En. de 2020
The left and right eigenvectors are matched one-by-one. For example, for [V, D, W] = eig(A), the eigenvalue D(k, k) corresponds to the right eigenvector V(:, k) and the left eigenvector W(:, k). In other words, A*V = V*D and A'*W = W*conj(D).
  1 comentario
AHMAD KHUSYAIRI CHE RUSLI
AHMAD KHUSYAIRI CHE RUSLI el 30 de En. de 2020
Thank you for the answer,
but I still not clear the value of right eigencertor to report.

Iniciar sesión para comentar.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by