similarity matrix has very large size, how process it without segmenting it?

2 visualizaciones (últimos 30 días)
*hi,
I have similarity matrix with size 17770*17770. When process it get out of memory
In fact, at first , I got this similarity matrix by segmenting the original matrix into 7 parts , each one with size 2500*17770, then collect these parts to get the final size. But, the next step , I can not process it partly because I want to make clustering for this similarity matrix. So, it is impossible processing it partly
Is there a way to process this similarity matrix.*
Thanks in advance
  23 comentarios
huda nawaf
huda nawaf el 29 de Abr. de 2013
Walter,
ward did cluster when I used : L = linkage(d, 'ward', 'euclidean', 'savememory', 'on');
But ,I can not predicate the running time ,maybe 4-5 hours. anyway, it is not important the running time becuase I run it one time.
you resolved big problem , many many thanks.
Walter, If I want use spectral clustering instead of ward to show the difference betwen them in terms of clustering. earlier I faced the same problem (out of memory) wth spectral clustering. what I have to change in following code.in the following function call to other function, but the out of memory happen befor calling the other function
sim=dlmread('d:\matlab\r2011a\bin\netflix\combain_arrays_sim\sim2_norm.txt');
[p o]=size(sim)
for i=1:p
x=sim(i,:);
x=x(x~=0);
deg(i)=length(x);
end
total_edg=sum(deg)/2
%%%%%compute the modularity matrx
B=sim-((deg'*deg)/(2*total_edg));
'%%%compute eignvalue and eignvector'
[U Beta]=eig(B);
Beta1=diag(Beta);
[Beta1 ind]=sort(Beta1,'descend');
if Beta1(1)>0
bb=find(U(:,ind(1))>0);
for i=1:length(bb)
s(bb(i))=1;
end
bb1=find(U(:,ind(1))<=0);
for j=1:length(bb1)
s(bb1(j))=-1;
end
v=s*B*s'
% if v>0
' %%%divide the eignvector into two groups'
if sum(s)~=length(s)&& sum(s)~=-length(s)
k=1;k1=1;
for j=1:length(s)
if s(j)>0
for j1=1:o
Grp_1(k,j1)=B(j,j1);
trac(k)=j;
end
k=k+1;
else
for j2=1:o
Grp_2(k1,j2)=B(j,j2);
trac1(k1)=j;
end
k1=k1+1;
end
end
tt=[trac1(1:length(trac1))];
Grp_1(:,tt)=[];
tt1=[trac(1:length(trac))];
Grp_2(:,tt1)=[];
hh=sum(Grp_1');
[p o]=size(Grp_1');
for i=1:p
for j=1:o
if i==j
B_updat(i,j)=Grp_1(i,j)-hh(i);
else
B_updat(i,j)=Grp_1(i,j);
end
end
end
hh1=sum(Grp_2');
[p o]=size(Grp_2);
for i=1:p
for j=1:o
if i==j
B1_updat(i,j)=Grp_2(i,j)-hh1(i);
else
B1_updat(i,j)=Grp_2(i,j);
end
end
end
itr=1
nn=(s*B*s')/2;
z=0;
Divide1_2(B_updat,z,trac,itr,nn);
Divide1_2(B1_updat,z,trac1,itr,nn);
else
'the network is indivisible because s is indivisible'
return;
end
else
'the network is indivisible because Beta1<0'
end
fclose all
Aishwarya Iyengar
Aishwarya Iyengar el 9 de Jul. de 2020
@huda nawaf
I have a question :
How to create a similarity matrix for 300x300 images ?
please Help... Thanks in advance.

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Matrices and Arrays en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by