Cody

Problem 1946. Fibonacci-Sum of Squares

Solution 2035214

Submitted on 25 Nov 2019 by Rashmi Doijode
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
n = 5; S = 40; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5

2   Pass
n = 8; S = 714; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21

3   Pass
n = 11; S = 12816; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21 f = 1 1 2 3 5 8 13 21 34 f = 1 1 2 3 5 8 13 21 34 55 f = 1 1 2 3 5 8 13 21 34 55 89

4   Pass
n = 15; S = 602070; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21 f = 1 1 2 3 5 8 13 21 34 f = 1 1 2 3 5 8 13 21 34 55 f = 1 1 2 3 5 8 13 21 34 55 89 f = 1 1 2 3 5 8 13 21 34 55 89 144 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

5   Pass
n = 21; S = 193864606; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21 f = 1 1 2 3 5 8 13 21 34 f = 1 1 2 3 5 8 13 21 34 55 f = 1 1 2 3 5 8 13 21 34 55 89 f = 1 1 2 3 5 8 13 21 34 55 89 144 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 17 987 1597 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 18 987 1597 2584 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 19 987 1597 2584 4181 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 20 987 1597 2584 4181 6765 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 21 987 1597 2584 4181 6765 10946

6   Pass
n = 26; S = 23843770274; assert(isequal(FibSumSquares(n),S))

f = 1 1 2 f = 1 1 2 3 f = 1 1 2 3 5 f = 1 1 2 3 5 8 f = 1 1 2 3 5 8 13 f = 1 1 2 3 5 8 13 21 f = 1 1 2 3 5 8 13 21 34 f = 1 1 2 3 5 8 13 21 34 55 f = 1 1 2 3 5 8 13 21 34 55 89 f = 1 1 2 3 5 8 13 21 34 55 89 144 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 f = 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 17 987 1597 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 18 987 1597 2584 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 19 987 1597 2584 4181 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 20 987 1597 2584 4181 6765 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 21 987 1597 2584 4181 6765 10946 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 22 987 1597 2584 4181 6765 10946 17711 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 23 987 1597 2584 4181 6765 10946 17711 28657 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 24 987 1597 2584 4181 6765 10946 17711 28657 46368 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 25 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 f = Columns 1 through 15 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 Columns 16 through 26 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393

Suggested Problems

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!