Rotor Speed Control- Deloading Control for Frequency Regulation by wind turbines
Generally, DFIG operates at maximum power points. Here 10% reserves are created through rotor speed control (overspeeding) to provide spinning reserves that can be utilized for primary frequency regulation by DFIG. The DFIG operates at lesser power coefficient of 0.9*0.48. This is done by increasing tipspeed ratio or overspeeding rotor and changing the electrical power reference from Pmax t0 0.9 Pmax. Then a frequency regulation loop will provide additional increase in active power whenever there is frequency deviation from 60 Hz
Citar como
Venkatesh Yadav (2024). Rotor Speed Control- Deloading Control for Frequency Regulation by wind turbines (https://www.mathworks.com/matlabcentral/fileexchange/49935-rotor-speed-control-deloading-control-for-frequency-regulation-by-wind-turbines), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.