calculate blur kernel from original and blurry images

Versión 1.0 (1010 KB) por Dan
deconvolution, deblur, fast, ransac, blur kernel
1,4K Descargas
Actualizado 16 ene 2016

Ver licencia

If you are in the situation in which you have the original image ( or an image which is very close to the original - for example in successive frames of a video) than you can use this function to get a good estimate of the blur kernel much faster than working with the blurry image only.
there is a simple demo that should work out of the box .
let me know if there is any problems with this :)
%purpose:
% estimate quickly and effectively the kernel that was used to blur img_orig
% into img_blurred.
% method:
% This function treats the kernel as the solution to an over-constrained
% problem. In other words :
% 1) blurred image = original image ** blur kernel ; where ** = convolution
% 2) hence for each pixel:
% blurred image(i,j) = original image( neighborhood(i,j) .* blur kernel)
% 3) a set of equations (2) can be set for different i,j's to solve for
% the blur kernel.
% 4) there are many many more equations than needed to solve for the blur
% kernel
% A variation of the ransac algorithm is implemented in order to
% find a good estimate of the blur kernel.
kind regards,
dan

Citar como

Dan (2025). calculate blur kernel from original and blurry images (https://la.mathworks.com/matlabcentral/fileexchange/54944-calculate-blur-kernel-from-original-and-blurry-images), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2015a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0

small big fix
image