File Exchange

image thumbnail

Binary Optimization Using Hybrid GWO for Feature Selection

version 1.0.0 (10.5 KB) by Qasem Al-Tashi
This is the Matlab Code for BGWOPSO


Updated 26 Jul 2020

View License

MATLAB code for BGWOPSO: Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection
Paper Reference - Al-Tashi, Q., Kadir, S. J. A., Rais, H. M., Mirjalili, S., & Alhussian, H. (2019). Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access, 7, 39496-39508.
Link for algorithm details: Paper
Running the code
Set all the required parameters
run file demo.m

A binary version of the hybrid grey wolf optimization (GWO) and particle swarm optimization (PSO) is proposed to solve feature selection problems in this paper. The original PSOGWO is a new hybrid optimization algorithm that benefits from the strengths of both GWO and PSO. Despite the superior performance, the original hybrid approach is appropriate for problems with a continuous search space. Feature selection, however, is a binary problem. Therefore, a binary version of hybrid PSOGWO called BGWOPSO is proposed to find the best feature subset. To find the best solutions, the wrapper-based method K-nearest neighbors classifier with Euclidean separation matric is utilized. For performance evaluation of the proposed binary algorithm, 18 standard benchmark datasets from UCI repository are employed. The results show that BGWOPSO significantly outperformed the binary GWO (BGWO), the binary PSO, the binary genetic algorithm, and the whale optimization algorithm with simulated annealing when using several performance measures including accuracy, selecting the best optimal features, and the computational time.

Cite As

Al-Tashi, Qasem, et al. “Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection.” IEEE Access, vol. 7, Institute of Electrical and Electronics Engineers (IEEE), 2019, pp. 39496–508, doi:10.1109/access.2019.2906757.

View more styles

Comments and Ratings (2)

Abdus Samad Azad

Fares Al-shargie

MATLAB Release Compatibility
Created with R2017a
Compatible with R2010a to R2017a
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!