Skip to content
MathWorks - Mobile View
  • Inicie sesión cuenta de MathWorksInicie sesión cuenta de MathWorks
  • Access your MathWorks Account
    • Mi Cuenta
    • Mi perfil de la comunidad
    • Asociar Licencia
    • Cerrar sesión
  • Productos
  • Soluciones
  • Educación
  • Soporte
  • Comunidad
  • Eventos
  • Obtenga MATLAB
MathWorks
  • Productos
  • Soluciones
  • Educación
  • Soporte
  • Comunidad
  • Eventos
  • Obtenga MATLAB
  • Inicie sesión cuenta de MathWorksInicie sesión cuenta de MathWorks
  • Access your MathWorks Account
    • Mi Cuenta
    • Mi perfil de la comunidad
    • Asociar Licencia
    • Cerrar sesión

Vídeos y webinars

  • MathWorks
  • Vídeos
  • Vídeos-Inicio
  • Buscar
  • Vídeos-Inicio
  • Buscar
  • Comuníquese con ventas
  • Software de prueba
3:20 Video length is 3:20.
  • Description
  • Full Transcript
  • Related Resources

What Is Object Detection?

Object detection is a key technology behind applications like video surveillance and advanced driver assistance systems (ADAS). Object detection algorithms typically use machine learning, deep learning, or computer vision techniques to locate and classify objects in images or video.

With MATLAB® and Simulink®, you can:

  • Explore different object detection techniques with just a few lines of code to see what works best for your data
  • Use interactive apps to automate ground truth labeling
  • Interoperate with other deep learning frameworks using ONNX™ import/export capabilities
  • Accelerate the training process using GPUs or compute clusters

Object detection is a computer vision technique for locating instances of objects within images or video. Object detection techniques train predictive models or use template matching to locate and classify objects.

Object detection is a key technology behind applications like video surveillance, image retrieval systems, and advanced driver assistance systems (ADAS).

There are a variety of techniques that can be used to perform object detection. The techniques generally fall into three main categories: object detection using deep learning, object detection using machine learning, and object detection using classical computer vision techniques.

Popular deep learning-based approaches, like R-CNN or YOLO v2, use convolutional neural networks (CNNs) to learn the features necessary to detect objects.

Machine learning-based approaches use feature extraction before training a classifier to identify the objects. Popular approaches include aggregate channel features (ACF) and the Viola-Jones algorithm.

Finally, more traditional computer vision methods may be sufficient, depending on the application. A few examples include techniques like template matching, image segmentation and blob analysis, or feature extraction and matching.

With MATLAB, you can try a variety of these approaches with just a few lines of code to see what works best for your data. You can leverage one of the many pretrained detectors provided with MATLAB or you can create a custom detector specifically for your application.

We have other videos on object detection with machine learning and classical computer vision, so in this video, I’m going to focus more on deep learning.

The first step to use deep learning for object detection is to label samples of the type of object you want to recognize. Training a predictive model for object detection typically requires thousands, or even millions, of labeled samples.

Interactive apps can help you automate the labeling of objects in images or video. This helps you focus more effort on developing the object detection algorithm rather than preparing training data.

With MATLAB, you can also interoperate between other machine learning and deep learning frameworks to develop object detectors.

If you already have a network implemented outside MATLAB, you can import it using ONNX import capabilities. Conversely, if you create a network in MATLAB but want to use it somewhere else, you can export it using ONNX import.

Once you have a network in MATLAB, you can accelerate the training process with GPUs or compute clusters by changing a single name-value pair. If you are using a pretrained network, you can use transfer learning to fine-tune the model for your application. This can help further reduce training time and improve the network’s performance.

To get started, you can use one of the many reference examples in the documentation. To learn more about object detection with MATLAB, please explore the online documentation page.

Related Products

  • Computer Vision Toolbox
  • Deep Learning Toolbox
  • Image Processing Toolbox
  • MATLAB

Learn More

Learn More About Object Detection
Object Detection Using Deep Learning

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper
Related Information
Get Started with Object Detection Examples

Feedback

Featured Product

Computer Vision Toolbox

  • Request Trial
  • Get Pricing

Up Next:

46:56
Computer Vision with MATLAB for Object Detection and...

Related Videos:

7:01
Introduction to Kalman Filters for Object Tracking
4:59
Object Recognition and Tracking for Augmented Reality
48:12
Object-Oriented Programming in MATLAB
11:11
New Object-Oriented Programming Features in R2008a

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Comuníquese con ventas
  • Software de prueba

MathWorks

Accelerating the pace of engineering and science

MathWorks es el líder en el desarrollo de software de cálculo matemático para ingenieros

Descubra…

Explorar productos

  • MATLAB
  • Simulink
  • Software para estudiantes
  • Soporte para hardware
  • File Exchange

Probar o comprar

  • Descargas
  • Software de prueba
  • Comuníquese con ventas
  • Precios y licencias
  • Cómo comprar

Aprender a utilizar

  • Documentación
  • Tutoriales
  • Ejemplos
  • Vídeos y webinars
  • Formación

Obtener soporte

  • Ayuda para la instalación
  • MATLAB Answers
  • Consultoría
  • Centro de licencias
  • Contactar con soporte

Acerca de MathWorks

  • Ofertas de empleo
  • Sala de prensa
  • Misión social
  • Casos prácticos
  • Acerca de MathWorks
  • Select a Web Site United States
  • Centro de confianza
  • Marcas comerciales
  • Política de privacidad
  • Antipiratería
  • Estado de las aplicaciones

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Únase a la conversación