Lidar Tracking
These examples track extended objects using lidar detections and
multi-object trackers, such as trackerJPDA
and
trackerGridRFS
.
Featured Examples
Highway Vehicle Tracking Using Multi-Sensor Data Fusion
Track vehicles on a highway with commonly used sensors such as radar, camera, and lidar. In this example, you configure and run a Joint Integrated Probabilistic Data Association (JIPDA) tracker to track vehicles using recorded data from a suburban highway driving scenario.
- Since R2024b
- Open Live Script
Detect, Classify, and Track Vehicles Using Lidar
Detect, classify, and track vehicles by using lidar point cloud data captured by a lidar sensor mounted on an ego vehicle. The lidar data used in this example is recorded from a highway-driving scenario contained in WPI Lidar Visual SLAM Dataset [1]. In this example, the point cloud data is segmented to determine the class of objects using the PointSeg network. A joint probabilistic data association (JPDA) tracker with an interactive multiple model filter is used to track the detected vehicles.
Track Vehicles Using Lidar: From Point Cloud to Track List
Track vehicles using measurements from a lidar sensor mounted on top of an ego vehicle.
Object-Level Fusion of Lidar and Camera Data for Vehicle Tracking
Fuse lidar and camera data to track vehicles using a JIPDA tracker.
- Since R2023a
- Open Live Script
Grid-Based Tracking in Urban Environments Using Multiple Lidars
Track moving objects with multiple lidars using a grid-based tracker. A grid-based tracker enables early fusion of data from high-resolution sensors such as radars and lidars to create a global object list.
Fuse Prerecorded Lidar and Camera Data to Generate Vehicle Track List for Scenario Generation
Fuse prerecorded lidar and camera object detections to create a smoothed vehicle track list.
- Since R2023a
- Open Live Script
Track Vehicles Using Lidar Data in Simulink
Track vehicles using measurements from a lidar sensor mounted on top of an ego vehicle. Due to high resolution capabilities of the lidar sensor, each scan from the sensor contains a large number of points, commonly known as a point cloud. The example illustrates the workflow in Simulink for processing the point cloud and tracking the objects. The lidar data used in this example is recorded from a highway driving scenario. You use the recorded data to track vehicles with a joint probabilistic data association (JPDA) tracker and an interacting multiple model (IMM) approach. The example closely follows the Track Vehicles Using Lidar: From Point Cloud to Track List MATLAB® example.
Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink
Track moving objects with multiple lidars using a grid-based tracker in Simulink. You use the Grid-Based Multi Object Tracker Simulink block to define the grid-based tracker. This Grid-based tracker uses dynamic occupancy grid map as an intermediate representation of the environment. This example closely follows the Grid-Based Tracking in Urban Environments Using Multiple Lidars MATLAB® example.
- Since R2021b
- Open Model
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)