portfolioECL
Syntax
Description
[
,
given the totalECL
,ECLByID
,ECLByPeriod
] = portfolioECL(MarginalPD
,LGD
,EAD
)MarginalPD
, LGD
, and
EAD
values for a portfolio of loans, computes the lifetime
expected credit loss (ECL) at the individual or portfolio level.
[
adds optional name-value pair arguments for
totalECL
,ECLByID
,ECLByPeriod
] = portfolioECL(___,Name=Value
)ScenarioProbabilities
, InterestRate
,
Periodicity
, IDVar
, and
ScenarioNames
.
Examples
Calculate ECL Based on Marginal PD, LGD, and EAD Predictions
This example shows how to calculate the expected credit loss (ECL) based on marginal probability of default (PD), loss given default (LGD), and exposure at default (EAD).
Marginal PD — Expectation of a credit default event over a given time frame.
LGD — Portion of a nonrecovered credit in the case of default.
EAD — Balance at the time of default.
IFRS 9 requires multiple economic scenarios to be modeled while computing ECL. This example considers five macroeconomic scenarios: severe, adverse, baseline, favorable, and excellent.
Load Data
Load the credit data for company IDs 1304
and 2067
and the associated macroeconomic scenarios.
load DataPredictLifetime.mat
disp(LoanData)
ID ScoreGroup YOB Year ____ _____________ ___ ____ 1304 "Medium Risk" 4 2020 1304 "Medium Risk" 5 2021 1304 "Medium Risk" 6 2022 1304 "Medium Risk" 7 2023 1304 "Medium Risk" 8 2024 1304 "Medium Risk" 9 2025 1304 "Medium Risk" 10 2026 2067 "Low Risk" 7 2020 2067 "Low Risk" 8 2021 2067 "Low Risk" 9 2022 2067 "Low Risk" 10 2023
disp(head(MultipleScenarios,10))
ScenarioID Year GDP Market __________ ____ ____ ______ "Severe" 2020 -0.9 -5.5 "Severe" 2021 -0.5 -6.5 "Severe" 2022 0.2 -1 "Severe" 2023 0.8 1.5 "Severe" 2024 1.4 4 "Severe" 2025 1.8 6.5 "Severe" 2026 1.8 6.5 "Severe" 2027 1.8 6.5 "Adverse" 2020 0.1 -0.5 "Adverse" 2021 0.2 -2.5
disp(ScenarioProbabilities)
Probability ___________ Severe 0.1 Adverse 0.2 Baseline 0.3 Favorable 0.2 Excellent 0.2
Load the pdModel
that was created using fitLifetimePDModel
with a Probit
model.
load LifetimeChampionModel.mat
disp(pdModel)
Probit with properties: ModelID: "Champion" Description: "A sample model used as champion model for illustration purposes." UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel] IDVar: "ID" AgeVar: "YOB" LoanVars: "ScoreGroup" MacroVars: ["GDP" "Market"] ResponseVar: "Default" WeightsVar: "" TimeInterval: []
Define the interest rate to discount future losses back to present.
EffRate = 0.045;
Create Scenarios
Compute marginal lifetime PDs for the two companies.
CompanyID = 1304; IndCompany = LoanData.ID == CompanyID; Years = LoanData.Year(IndCompany); NumYears = length(Years); ScenarioID = unique(MultipleScenarios.ScenarioID,'stable'); NumScenarios = length(ScenarioID); PD1 = zeros(NumYears,NumScenarios); for ii=1:NumScenarios IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii); data = join(LoanData(IndCompany,:),MultipleScenarios(IndScenario,:)); PD1(:,ii) = predictLifetime(pdModel,data,ProbabilityType="marginal"); end DiscTimes = Years-Years(1)+1; DiscFactors = 1./(1+EffRate).^DiscTimes; ProbScenario = ScenarioProbabilities.Probability; CompanyID = 2067; IndCompany = LoanData.ID == CompanyID; Years = LoanData.Year(IndCompany); NumYears = length(Years); PD4 = zeros(NumYears,NumScenarios); for ii=1:NumScenarios IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii); data = join(LoanData(IndCompany,:),MultipleScenarios(IndScenario,:)); PD4(:,ii) = predictLifetime(pdModel,data,ProbabilityType="marginal"); end
Calculate Marginal PD for Multiple IDs
Create a table for the portfolio PD
that contains the PD for the two companies.
PD = array2table([PD1; PD4]); PD.Properties.VariableNames = {'Severe','Adverse','Baseline','Favorable','Excellent'}; PD.ID = [repmat(1304,7,1);repmat(2067,4,1)]; PD = movevars(PD, 'ID', 'Before', 'Severe'); disp(PD)
ID Severe Adverse Baseline Favorable Excellent ____ __________ __________ __________ __________ __________ 1304 0.011316 0.0096361 0.0081783 0.006918 0.0058324 1304 0.0078277 0.0069482 0.0061554 0.0054425 0.0048028 1304 0.0048869 0.0044693 0.0040823 0.0037243 0.0033938 1304 0.0031017 0.0029321 0.0027698 0.0026147 0.0024668 1304 0.0019309 0.0018923 0.0018538 0.0018153 0.001777 1304 0.0012157 0.0012197 0.0012233 0.0012264 0.0012293 1304 0.00082053 0.00082322 0.00082562 0.00082775 0.00082964 2067 0.0022199 0.001832 0.0015067 0.001235 0.0010088 2067 0.0014464 0.0012534 0.0010841 0.00093599 0.00080662 2067 0.0008343 0.00074897 0.00067168 0.00060175 0.00053857 2067 0.00049107 0.00045839 0.00042769 0.00039887 0.00037183
Calculate LGD for Multiple IDs
Create a table for the portfolio LGD
that contains the LGD for the two companies.
LGD = array2table([0.25, 0.23, 0.21, 0.19, 0.17; 0.24, 0.22, 0.2, 0.18, 0.16]); LGD.Properties.VariableNames = {'S1','S2','S3','S4','S5'}; LGD.ID = [1304;2067]; LGD = movevars(LGD, 'ID', 'Before', 'S1'); disp(LGD)
ID S1 S2 S3 S4 S5 ____ ____ ____ ____ ____ ____ 1304 0.25 0.23 0.21 0.19 0.17 2067 0.24 0.22 0.2 0.18 0.16
Calculate EAD for Multiple IDs
Create a table for the portfolio EAD
that contains the EAD for the two companies 1304
and 2067
.
EAD = array2table(horzcat([repmat(1304,7,1);repmat(2067,4,1)],vertcat((100000:-10000:40000)',(120000:-10000:90000)'))); EAD.Properties.VariableNames = {'ID','EAD'}; disp(EAD)
ID EAD ____ _______ 1304 1e+05 1304 90000 1304 80000 1304 70000 1304 60000 1304 50000 1304 40000 2067 1.2e+05 2067 1.1e+05 2067 1e+05 2067 90000
Use portfolioECL
with PD
, LGD
, and EAD
Tables
Compute the lifetime ECL using portfolioECL
.
[totalECL, ECLByID, ECLByPeriod] = portfolioECL(PD, LGD, EAD,ScenarioProbabilities=[0.1 0.2 0.3 0.2 0.2], ... InterestRate = EffRate, Periodicity="monthly",ScenarioNames={'Severe','Adverse','Baseline','Favorable','Excellent'});
Display the total portfolio ECL.
disp(totalECL);
510.5860
Display the scenario weighted ECLs for each individual loan.
disp(ECLByID);
ID ECL ____ ______ 1304 430.68 2067 79.905
Display the ECL for each individual loan per time period and per scenario.
disp(ECLByPeriod);
ID TimePeriod Severe Adverse Baseline Favorable Excellent ____ __________ ______ _______ ________ _________ _________ 1304 1 281.84 220.8 171.1 130.95 98.781 1304 2 174.81 142.76 115.47 92.372 72.935 1304 3 96.647 81.317 67.817 55.978 45.64 1304 4 53.474 46.505 40.111 34.259 28.918 1304 5 28.426 25.63 22.924 20.311 17.79 1304 6 14.859 13.715 12.559 11.393 10.217 1304 7 7.9931 7.3777 6.7558 6.1282 5.4957 2067 1 63.693 48.183 36.026 26.576 19.296 2067 2 37.901 30.106 23.673 18.394 14.091 2067 3 19.8 16.293 13.284 10.711 8.5209 2067 4 10.449 8.9412 7.5839 6.3656 5.2748
Input Arguments
MarginalPD
— Marginal PD values
table
Marginal PD values, specified as a table with a column for IDs that is
defined by IDVar
.
Note
The MarginalPD
table column name for IDs and
the order of IDs must be the same as the ID columns of the
LGD
and EAD
tables.
You can use fitLifetimePDModel
to create a PD model and predict
to
create a vector that can be converted to a table using array2table
.
Data Types: table
LGD
— LGD values
table
LGD value, specified as a table with a column for IDs that is defined by
IDVar
.
Note
The LGD
table column name for lDs and the order
of IDs must be the same as the ID columns of the
MarginalPD
and EAD
tables.
You can use fitLGDModel
to
create a LGD model and predict
to create a
vector that can be converted to a table using array2table
.
Data Types: table
EAD
— EAD values
table
EAD value, specified as a table with a column for IDs that is defined by
IDVar
.
Note
The EAD
table column name for IDs and the order
of IDs must be the same as the ID columns of the
MarginalPD
and LGD
tables.
You can use fitEADModel
to
create a EAD model and predict
to create a
vector that can be converted to a table using array2table
.
Data Types: table
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: [totalECL,ECLByID,ECLByPeriod] =
portfolioECL(MarginalPD,LGD,EAD,InterestRate=0.045,Periodicity="annual")
ScenarioProbabilities
— Probabilities assigning weights to corresponding scenarios
equal weighted (default) | numeric vector
Probabilities assigning weights to corresponding scenarios, specified
as ScenarioProbabilities
and a numeric vector. The
ScenarioProbabilities
values must be greater than
or equal to 0 and sum to 1.
Data Types: double
InterestRate
— Interest rate to discount future losses back to present
0
(default) | scalar positive or negative decimal | table
Interest rate to discount future losses back to present, specified as
InterestRate
and a scalar positive or negative
decimal or a table.
If you specify a scalar, the interest-rate value applies to the entire portfolio.
If you specify a table, there must be exactly two columns in the interest-rate table, one for IDs and the other for the interest-rate value for each loan. Each row must have an ID that cannot be repeated on another row in the table. The IDs must match and be in the same order as the IDs used by
MarginalPD
,LGD
, andEAD
tables.
Data Types: double
| table
Periodicity
— Time period of input data
"quarterly"
(default) | character vector with value of 'quarterly'
, 'monthly'
, 'semiannual'
, or
'annual'
| string with value of "quarterly"
,
"monthly"
, "semiannual"
, or
"annual"
Time period of input data, specified as Periodicity
and a character vector or string.
Data Types: char
| string
IDVar
— Column name for ID in MarginalPD
, LGD
, EAD
tables
1st column in MarginalPD
, LGD
, EAD
tables (default) | character vector | string
Column name for ID in MarginalPD
,
LGD
, and EAD
tables, specified
as IDVar
and a character vector or string.
Data Types: char
| string
ScenarioNames
— User-defined scenario names
Scenario(n)
(where n
=1:numScenarios
) (default) | cell array of character vectors | string array
User-defined scenario names with one name per scenario, specified as
ScenarioNames
and a cell array of character
vectors or string array. The ScenarioNames
must all
be unique and nonempty.
Data Types: cell
| string
Output Arguments
totalECL
— Total portfolio ECL
scalar
Total portfolio ECL, returned as a scalar. The total portfolio ECL is computed as a sum of the ECLs of each loan weighted by the scenario probabilities and discounted to the present.
ECLByID
— Scenario weighted ECLs for each individual loan
table
Scenario weighted ECLs for each individual loan, returned as a table.
ECLByPeriod
— ECL for each individual loan per time period and per scenario
table
ECL for each individual loan per time period and per scenario, returned as a table.
More About
Expected Credit Losses
The expected credit losses (ECLs) model adopts a forward-looking approach to estimation of impairment losses.
The discounted ECL at time t for scenario s is defined as
where
t denotes a time period.
s denotes a scenario.
i denotes a loan.
PDmarginal,i(t;s) is the marginal probability of default (PD) (see
predictLifetime
) for loan i at time period t, given scenario s.LGDi(t;s) is the loss given default (LGD) for loan i at time period t, given scenario s.
EADi(t;s) is the exposure at default (EAD) for loan i at time period t, given scenario s.
Disci(t) is the discount factor for loan i at time period t, based on the loan's effective interest rate.
The ECLi(t;s) quantities are computed for each time period in the remaining life of a loan and for each scenario. These quantities are reported in the
ECLByPeriod
output ofportfolioECL
for all loans in the portfolio.The lifetime ECL for loan i is computed as
where
Ni is the number of periods in the remaining life of loan i.
M is the number of scenarios.
P(s) denotes the scenario probabilities.
The ECLi quantity is reported in the
ECLByID
output ofportfolioECL
for all loans in the portfolio.The total portfolio lifetime ECL is
where
L
is the number of loans in the portfolio.The total ECL value for the portfolio is reported in the
totalECL
output of theportfolioECL
function.
To compute an ECL spanning only 1-year ahead (as opposed to a lifetime ECL), the
inputs to portfolioECL
must only include time periods within the
1-year period of interest. For more information, see Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations.
Version History
Introduced in R2022a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)