2-D Autocorrelation

2-D autocorrelation of input matrix

• Library:
• Computer Vision Toolbox / Statistics

• Description

The 2-D Autocorrelation block computes the 2-D autocorrelation of the input vector or matrix.

Ports

Input

expand all

Input array, specified as a vector or matrix.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Output

expand all

Autocorrelation of the input array, returned as a vector or matrix. The data type of the output is the same as that of the input.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point
Complex Number Support: Yes

Parameters

expand all

For details on fixed-point block parameters, see Specify Fixed-Point Attributes for Blocks.

Select this parameter to prevent the fixed-point tools from overriding the data types you specify in this block. For more information, see Lock the Output Data Type Setting (Fixed-Point Designer).

Block Characteristics

 Data Types double | fixed point | integer | single Multidimensional Signals no Variable-Size Signals yes

Algorithms

If the input Ais a vector with dimension M-by-1 then the equation for 1-D discrete autocorrelation is:

$C\left(n\right)=\sum _{m=0}^{M-1}A\left(m\right)\ast A\left(m+n\right)$

where $0\le n\le 2M-1$ .

The output is an autocorrelation vector of size $\left(2M-1,1\right)$.

If the input A is a matrix with dimension M-by-N then the equation for the 2-D discrete autocorrelation is:

$C\left(i,j\right)=\sum _{m=0}^{\left(M-1\right)}\sum _{n=0}^{\left(N-1\right)}A\left(m,n\right)\cdot conj\left(A\left(m+i,n+j\right)\right)$

where $0\le i<2M-1$ and $0\le j<2N-1$.

The dimension of the output autocorrelation matrix is $\left(2M-1,2N-1\right)$.

Extended Capabilities

C/C++ Code GenerationGenerate C and C++ code using Simulink® Coder™.

Introduced before R2006a