# ctranspose

Laurent matrix transpose

Since R2021b

## Syntax

``B = ctranspose(A)``

## Description

example

````B = ctranspose(A)` returns the transpose of the Laurent matrix `A`.```

## Examples

collapse all

Create two Laurent polynomials:

• $a\left(z\right)=2+4{z}^{-1}+6{z}^{-2}$

• $b\left(z\right)={z}^{2}+3z+5$

```lpA = laurentPolynomial(Coefficients=[2 4 6]); lpB = laurentPolynomial(Coefficients=[1 3 5],MaxOrder=2);```

Create the Laurent matrix `lmat` = $\left[\begin{array}{cc}-1& \mathit{a}\left(\mathit{z}\right)\\ \mathit{b}\left(\mathit{z}\right)& 7\end{array}\right]$.

`lmat = laurentMatrix(Elements={-1 lpA; lpB 7});`

Display the elements of the transpose of `lmat`.

```lmatTrans = ctranspose(lmat); for j=1:2 for k=1:2 elt = lmatTrans.Elements{j,k}; fprintf("===================\nlmatTrans(%d,%d):\n",j,k); elt end end```
```=================== lmatTrans(1,1): ```
```elt = laurentPolynomial with properties: Coefficients: -1 MaxOrder: 0 ```
```=================== lmatTrans(1,2): ```
```elt = laurentPolynomial with properties: Coefficients: [1 3 5] MaxOrder: 2 ```
```=================== lmatTrans(2,1): ```
```elt = laurentPolynomial with properties: Coefficients: [2 4 6] MaxOrder: 0 ```
```=================== lmatTrans(2,2): ```
```elt = laurentPolynomial with properties: Coefficients: 7 MaxOrder: 0 ```

## Input Arguments

collapse all

Laurent matrix, specified as a `laurentMatrix` object.

## Output Arguments

collapse all

Transpose of a Laurent matrix, returned as a `laurentMatrix` object.

## Version History

Introduced in R2021b