wlanNonHTOFDMInfo
OFDM information for non-HT transmission
Syntax
Description
returns OFDM information for the specified oversampling factor. For more information about
oversampling, see FFT-Based Oversampling.info
= wlanNonHTOFDMInfo(___,OversamplingFactor=osf
)
Examples
Get OFDM Information for Non-HT-Data Field
Get and display the OFDM information for the non-HT-Data field.
info = wlanNonHTOFDMInfo('NonHT-Data');
disp(info);
FFTLength: 64 SampleRate: 20000000 CPLength: 16 NumSubchannels: 1 NumTones: 52 ActiveFrequencyIndices: [52x1 double] ActiveFFTIndices: [52x1 double] DataIndices: [48x1 double] PilotIndices: [4x1 double]
Demodulate Non-HT L-LTF and Get OFDM Information
OFDM demodulate the L-LTF in a non-HT transmission, then extract the data and pilot subcarriers.
Generate a WLAN waveform for a non-HT transmission.
cfg = wlanNonHTConfig; bits = [1; 0; 0; 1]; waveform = wlanWaveformGenerator(bits,cfg);
Obtain the field indices and extract the L-LTF.
ind = wlanFieldIndices(cfg); rx = waveform(ind.LLTF(1):ind.LLTF(2),:);
Perform OFDM demodulation on the L-LTF.
sym = wlanLLTFDemodulate(rx,cfg);
Get the OFDM information, then extract the data and pilot subcarriers.
bandwidth = cfg.ChannelBandwidth;
info = wlanNonHTOFDMInfo('L-LTF',bandwidth);
data = sym(info.DataIndices,:,:);
pilots = sym(info.PilotIndices,:,:);
Recover PSDU from Non-HT Data Signal
Configure and generate a non-HT time-domain waveform.
cfg = wlanNonHTConfig(MCS=4);
bits = randi([0 1],8*cfg.PSDULength,1,'int8');
waveform = wlanWaveformGenerator(bits,cfg);
Transmit the waveform through an additive white Gaussian noise (AWGN) channel with a signal-to-noise ratio (SNR) of 30.
snr = 30; rxWaveform = awgn(waveform,snr);
Extract the non-HT Data field from the received waveform.
field = 'NonHT-Data';
ind = wlanFieldIndices(cfg,field);
rx = rxWaveform(ind(1):ind(2),:);
Recover the frequency-domain signal by OFDM demodulating the time-domain data signal.
sym = wlanNonHTOFDMDemodulate(rx,field,cfg);
Extract the data subcarriers from the demodulated signal.
info = wlanNonHTOFDMInfo(field,cfg); sym = sym(info.DataIndices,:,:);
Recover the PSDU and confirm that it matches the transmitted PSDU.
noiseVarEst = 10^(-snr/10); psdu = wlanNonHTDataBitRecover(sym,noiseVarEst,cfg); isequal(bits,psdu)
ans = logical
1
Input Arguments
field
— Field for which the function returns OFDM information
'L-LTF'
| 'L-SIG'
| 'NonHT-Data'
Field for which the function returns OFDM information, specified as one of these values.
'L-LTF'
– Return OFDM information for the legacy long training field (L-LTF).'L-SIG'
– Return OFDM information for the legacy signal (L-SIG) field.'NonHT-Data'
– Return OFDM information for the non-HT Data field.
Data Types: char
| string
bandwidth
— Channel bandwidth of transmission
'CBW20'
(default) | 'CBW5'
| 'CBW10'
| 'CBW40'
| 'CBW80'
| 'CBW160'
Channel bandwidth of PPDU transmission, specified as one of these values.
'CBW5'
— Channel bandwidth of 5 MHz'CBW10'
— Channel bandwidth of 10 MHz'CBW20'
— Channel bandwidth of 20 MHz'CBW40'
— Channel bandwidth of 40 MHz for non-HT duplicate'CBW80'
— Channel bandwidth of 80 MHz for non-HT duplicate'CBW160'
— Channel bandwidth of 160 MHz for non-HT duplicate
Data Types: char
| string
cfg
— Non-HT transmission parameters
wlanNonHTConfig
object
Non-HT transmission parameters, specified as a wlanNonHTConfig
object. Because this function supports only OFDM modulation,
you must set the Modulation
property of this input to
'OFDM'
.
osf
— Oversampling factor
1
(default) | scalar greater than or equal to 1
Oversampling factor, specified as a scalar greater than or equal to 1. The oversampled cyclic prefix length must be an integer number of samples.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
Output Arguments
info
— OFDM information
structure
OFDM information, returned as a structure containing these fields.
Name | Values | Description | Data Types |
---|---|---|---|
FFTLength | Positive integer | Length of the fast Fourier transform (FFT) | double |
SampleRate | Positive scalar | Sample rate of the waveform | double |
CPLength | Positive integer | Cyclic prefix length, in samples | double |
NumTones | Nonnegative integer | Number of active subcarriers | double |
NumSubchannels | Positive integer | Number of 20 MHz subchannels | double |
ActiveFrequencyIndices | Column vector of integers in the interval
[–FFTLength /2,
(FFTLength /2 – 1)] | Indices of active subcarriers. Each element of this field is the index of an active subcarrier, such that the direct current (DC) or null subcarrier is at the center of the frequency band. | double |
ActiveFFTIndices | Column vector of integers in the interval [1,
FFTLength ] | Indices of active subcarriers within the FFT | double |
DataIndices | Column vector of integers in the interval [1,
NumTones ] | Indices of data within the active subcarriers | double |
PilotIndices | Column vector of integers in the interval [1,
NumTones ] | Indices of pilots within the active subcarriers | double |
Data Types: struct
Algorithms
FFT-Based Oversampling
An oversampled signal is a signal sampled at a frequency that is higher than the Nyquist rate. WLAN signals maximize occupied bandwidth by using small guardbands, which can pose problems for anti-imaging and anti-aliasing filters. Oversampling increases the guardband width relative to the total signal bandwidth, which increases the number of samples in the signal.
This function performs oversampling by using a larger IFFT and zero pad when generating an OFDM waveform. This diagram shows the oversampling process for an OFDM waveform with NFFT subcarriers made up of Ng guardband subcarriers on either side of Nst occupied bandwidth subcarriers.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2019a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)