Convolution Neural network for regression problems

16 visualizaciones (últimos 30 días)
Jahetbe
Jahetbe el 10 de En. de 2022
Comentada: yanqi liu el 10 de Feb. de 2022
Hi everyone
I want to use CNN for my problem. The existing examples in the MATLAB (Here) provided for images as 4-D arrays but my problem is as follows:
Inputs = N (78000,24)
Output = Y(78000,1)
How can I use the mentioned examples for my problem?
Thanks in advanced.
  1 comentario
KSSV
KSSV el 10 de En. de 2022
Editada: KSSV el 10 de En. de 2022
You can use NN toolbox right? Attach your data and tell us about your data, lets give a try to help you.

Iniciar sesión para comentar.

Respuesta aceptada

yanqi liu
yanqi liu el 11 de En. de 2022
yes,sir,may be use rand data to simulate your application,then you can replace data,such as
clc; clear all; close all;
% Inputs = N (78000,24);
% Output = Y(78000,1);
Inputs = randn(78000,24);
Output = rand(78000,1);
% get input data matrix
XTrain=(reshape(Inputs', [24,1,1,78000]));
YTrain=Output;
layers = [imageInputLayer([24 1 1])
convolution2dLayer([15 1],3,'Stride',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(1)
regressionLayer];
miniBatchSize = 128;
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',30, ...
'InitialLearnRate',1e-3, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',20, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options);
  3 comentarios
Jahetbe
Jahetbe el 10 de Feb. de 2022
Thank you for your answered.
Could you please help me to improve the accuracy of model?
I cannot find any optimum stduture to find my data not only when considered data for training and validations, but also when considered all of them for training.
Regards,
yanqi liu
yanqi liu el 10 de Feb. de 2022
yes,sir,just send data to me

Iniciar sesión para comentar.

Más respuestas (1)

Jahetbe
Jahetbe el 10 de En. de 2022
Dear @KSSV
Thank you for your response.
I want to use CNN to solve my problem.
My data is as follows.
Inputs = [ x11 x12 x13 x14
x21 x22 x23 x24
. . . .
xN1 xN2 XN3 XN4]
Outputs = [ Y11
Y21
.
.
.
.
YN1 ]
Wher N is the number of samples (i.e., 78000)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by