Deep Learning Layers to increase training accuracy
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi everyones.
I want to use DL for modeling a problem with 6 inputs and one output.
I've used the following layers but I cannot increase the model accuracy not only for unseen samples but also for training samples.
I've check different structures and try to generated a complex model as much as possible to get at least good results in training stages
numHiddenNeuron = 100;
layers = [
featureInputLayer(numFeatures,'Normalization','rescale-symmetric')
fullyConnectedLayer(numHiddenNeuron)
reluLayer('Name','relu')
batchNormalizationLayer
fullyConnectedLayer(numOut)
regressionLayer('Name','regression')];
I would be appreciated it if you could help me.
Regards,
0 comentarios
Respuestas (1)
yanqi liu
el 23 de Feb. de 2022
yes,sir,may be add some dropoutLayer in net Layers,such as
numHiddenNeuron = 100;
layers = [
featureInputLayer(numFeatures,'Normalization','rescale-symmetric')
fullyConnectedLayer(numHiddenNeuron)
reluLayer('Name','relu')
batchNormalizationLayer
dropoutLayer
fullyConnectedLayer(numOut)
regressionLayer('Name','regression')];
% or
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(100,'OutputMode','sequence')
dropoutLayer(0.3)
lstmLayer(50,'OutputMode','sequence')
dropoutLayer(0.2)
fullyConnectedLayer(numOut)
regressionLayer];
if possible,may be upload your data to analysis
2 comentarios
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!