How to smooth the matlab plot to get the desired plot shape?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Haya Ali
el 24 de Jul. de 2023
Comentada: Haya Ali
el 25 de Jul. de 2023
Is there a way to change figure one to figure 2 (like the lines I draw in red and black color) without changing the values of y1 and y2? Please help.
Figure 1:
Figure 2:
Below is my code
clear all; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
Xi = 0:0.005:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")
0 comentarios
Respuesta aceptada
Angelo Yeo
el 24 de Jul. de 2023
I'm not sure about your intention. But the easiest way to smooth signals is moving average. See the doc below for more information about moving average.
https://www.mathworks.com/help/releases/R2023a/matlab/ref/movmean.html
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
%% Smoothing
Yi_smooth = movmean(Yi_spline, 100);
Yj_smooth = movmean(Yj_spline, 100);
h(5) = plot(Xi, Yi_smooth, 'r','linewidth',2);
h(6) = plot(Xi, Yj_smooth, 'k','linewidth',2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
4 comentarios
Angelo Yeo
el 24 de Jul. de 2023
Anyways, if you insist that the resultant curve should pass (0, 0), you can think of something like curve fitting for a quadratic polynomial without a bias term.
clear; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")
%% Fitting a quadratic curve
% Set up fittype and options.
[xData, yData] = prepareCurveData( Xi, Yi_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yi_fit = fit( xData, yData, ft, opts );
[xData, yData] = prepareCurveData( Xi, Yj_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yj_fit = fit( xData, yData, ft, opts );
h(5) = plot(Xi, Yi_fit.p1*Xi.^2 + Yi_fit.p2*Xi,'r','linewidth', 2);
h(6) = plot(Xi, Yj_fit.p1*Xi.^2 + Yj_fit.p2*Xi,'k','linewidth', 2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
Más respuestas (0)
Ver también
Categorías
Más información sobre Smoothing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!