Matlab limitation in fsolve using function input
    3 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Meva
      
 el 22 de Ag. de 2016
  
    
    
    
    
    Comentada: Meva
      
 el 31 de Ag. de 2016
            Hello,
I tried to loop for time value (T) inside my fsolve, but fsolve is pretty unforgiving.
The time loop does not seem working.
When I plot, it gives the same values (h=x(1) and theta=x(2) does not change over time which should change)!
Please see the the script that uses for loop for time (T). T is input for fsolve. :
x0 = [.1, .1];
options = optimoptions('fsolve','Display','iter');
dt=0.01;
Nt=1/dt+1;
Tarray = [0:dt:1];
T = 0;
for nt=1:Nt   
[x,fval] = fsolve(@torder1,x0,options,T)
 T=T+dt;
h(nt)=x(1);
theta(nt) = x(2);
plot(Tarray,h,'*')
hold on
plot(Tarray,theta,'+')
end
and the function for fsolve:
function F=torder1(x,T)
     x_1=[0:0.01:1];
     b=0.6;
%$ sol(1) = h; sol(2) =theta;
clear x_1;   
syms x_1 h theta kappa
f_1(x_1,h,theta,kappa) = 1/2*(1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-kappa*x_1*(1-x_1))^2 ));
f_2(x_1,h,theta,kappa) = (x_1-b)/2*( 1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-kappa*x_1*(1-x_1))^2 ));
kappa =1;
f_11 = 1-( (h+(x_1-b)*theta)^2/(h+(x_1-b)*theta-1*x_1*(1-x_1))^2 );
f_21 = (x_1-b)/2*( 1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-x_1*(1-x_1))^2 ));
fint_1 = int(f_11, x_1);
fint_2 = int(f_21, x_1);
x_1=1;
upper_1=subs(fint_1);
upper_2=subs(fint_2);
clear x_1;
x_1=0;
lower_1=subs(fint_1);
lower_2=subs(fint_2);
clear x_1;
integral_result_1old=upper_1-lower_1;
integral_result_2old=upper_2-lower_2;
h0 = kappa *b*(1-b);
theta0 = kappa*(1-2*b);
integral_result_1 = subs(integral_result_1old, {h, theta}, {x(1), x(2)});
integral_result_2 = subs(integral_result_2old, {h, theta}, {x(1), x(2)});
F = [double(x(1) - integral_result_1*T^2 -h0);
    double(x(2) - integral_result_2*T^2 - theta0)];
0 comentarios
Respuesta aceptada
  Walter Roberson
      
      
 el 22 de Ag. de 2016
        
      Editada: Walter Roberson
      
      
 el 22 de Ag. de 2016
  
      fsolve() is for real values, but solutions to your equations are strictly complex, except at T = 0.
You might be getting false results from fsolve(), with it either giving up or finding something that appears to come out within constraints.
For example, if you
fsolve(@(x) x^2+1, rand)
then you will get a small negative real-valued answer that MATLAB finds to be within the tolerances, when the right answer should be something close to sqrt(-1)
11 comentarios
  Walter Roberson
      
      
 el 27 de Ag. de 2016
				I sleep. I have drive failures. I have network failures. I have appointments.
Más respuestas (1)
  Alan Weiss
    
      
 el 22 de Ag. de 2016
        I think that you need to replace your line
 [x,fval] = fsolve(@torder1,x0,options,T)
with
 [x,fval] = fsolve(@(x)torder1(x,T),x0,options)
Alan Weiss
MATLAB mathematical toolbox documentation
3 comentarios
  John D'Errico
      
      
 el 22 de Ag. de 2016
				
      Editada: John D'Errico
      
      
 el 22 de Ag. de 2016
  
			But that is not what Alan suggested. There is a difference between these lines:
[x,fval] = fsolve(@torder1(x,T),x0,options)
[x,fval] = fsolve(@(x)torder1(x,T),x0,options)
Alan suggested the second, but you then tried the first.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




