Parameter Switching

The Parameter Switching (PS) algorithm allows to approximate numerical attractors of chaotic dynamical systems
23 Descargas
Actualizado 6 jul 2022

Ver licencia

The PS algorithm allows to approximate numerical attractors of chaotic dynamical systems depending on a single real control parameter $p\in R$, such as the Lorenz system, Rossler system, Chen system, Lotka-Volterras ystem, Rabinovich-Fabrikant system, Hindmarsh-Rose system, Lu system, classes of minimal networks and many others, which are modeled by the following Initial Value Problem (IVP):
\begin{equation}
\dot{x(t)}=f(x(t))+pAx(t), x(0)=x_0,
\end{equation}
where $t\in[0,T]$, $T>0$, $x_0\in \mathbb{R}^n$, $A\in \mathbb{R}^{n\times n} is a constant matrix, and $f:\mathbb{R}^n\rightarrow \mathbb{R}^n$ is a continuous nonlinear function.
The code can be made via some convergent explicit fixed step-size $h$ numerical scheme, here the standard RK numerical scheme.
If every $h$ one switches $p$ within a chosen set of values, the obtained "switched" attractor $A^*$ approximates the "averaged" attractor $A^0$ obtained for $p$ replaced with the average value of the switched values.
Details on applications and algorithm convergence can be found on e.g.:
[1] Marius-F. Danca, Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox, Communications in Nonlinear Science and Numerical Simulation, 18(3), 500–510 (2013).
[2] Marius-F. Danca, Michal Feckan, Nikolay Kuznetsov, Guanrong Chen, Attractor as a convex combination of a set of attractors, Communications in Nonlinear Science and Numerical Simulation, 96, 105721 (2021)
[3] Marius-F. Danca, Random parameter-switching synthesis of a class of hyperbolic attractors, CHAOS, 18, 033111 (2008)

Citar como

Marius-F. Danca (2026). Parameter Switching (https://la.mathworks.com/matlabcentral/fileexchange/114620-parameter-switching), MATLAB Central File Exchange. Recuperado .

Marius-F. Danca, Michal Feckan, Nikolay Kuznetsov, Guanrong Chen, Attractor as a convex combination of a set of attractors, Communications in Nonlinear Science and Numerical Simulation, 96, 105721 (2021)

Compatibilidad con la versión de MATLAB
Se creó con R2022a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

Versión Publicado Notas de la versión
1.0.0