Tutorial: Bayesian Optimization

versión 1.0.0 (4.02 KB) por Karl Ezra Pilario
1D and 2D black-box Bayesian optimization demonstration with visualizations.

45 descargas

Actualizada 13 Jul 2022

Ver licencia

This code shows a visualization of each iteration in Bayesian Optimization. MATLAB's fitrgp is used to fit the Gaussian process surrogate model, then the next sample is chosen using the Expected Improvement acquisition function. An exploitation-exploration parameter can be changed in the code. The code contains both 1D and 2D "black-box" functions for optimization.
References:
[1] Rasmussen and Williams (2006). "Gaussian Processes for Machine Learning," MIT Press.

Citar como

Karl Ezra Pilario (2022). Tutorial: Bayesian Optimization (https://www.mathworks.com/matlabcentral/fileexchange/114950-tutorial-bayesian-optimization), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2022a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!