Fast Circular Cross Covariance
Sin licencia
%% CXCOV Circular Cross Covariance function estimates.
% CXCOV(a,b), where a and b are two signals of the same length, both
% periodic signals and real.
%%
%[lags,cc]=CXCOV(a,b) returns the length M-1 circular cross covariance
%sequence cc with corresponded lags.
%%
% The circular cross covariance is the normalized circular cross correlation function of
% two vectors with their means removed:
% c(k) = sum[a(n)-mean(a))*conj(b(n+k)-mean(b))]/[norm(a-mean(a))*norm(b-mean(b))];
% where vector b is shifted CIRCULARLY by k samples.
%%
% The function doesn't check the format of input vectors a and b!
%%
% For circular correlation and also the slower implementation of Cross Covariance
% between a and b look for CXCORR(a,b) (written by G. Levin, Apr. 26, 2004.) in
% http://www.mathworks.com/matlabcentral/fileexchange/loadAuthor.do?objectType=author&objectId=1093734
%%
% For Cross Covariance of real signals, the current method is about 30 times faster than
% the method suggested by Levin using For-loop. Simply cxcov(a,b)=ifft(fft(a).*fft(b(length(b):-1:1)))/(norm(a)*norm(b))
the devision is for normalization
%
% Author: Ehsan Azarnasab, Aug. 17, 2006.
%%
Citar como
Ehsan Azar (2026). Fast Circular Cross Covariance (https://la.mathworks.com/matlabcentral/fileexchange/11997-fast-circular-cross-covariance), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Signal Processing > Signal Processing Toolbox > Transforms, Correlation, and Modeling > Correlation and Convolution >
Etiquetas
Agradecimientos
Inspirado por: Circular Cross Covariance
Inspiración para: Fast Circular (Periodic) Cross Correlation
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0.0 |
