IMAGE COMPRESSION USING SVD [SINGULAR VALUE DECOMPOSITION]
Versión 1.0.0 (1,46 KB) por
AMIT SURYAVANSHI
The code is made by using the SVD method that is the singular value decomposition method which is using the U sigma and one more matrix
In linear algebra, the Singular Value Decomposition (SVD) of a matrix is a factorization of that matrix into three matrices. It has some interesting algebraic properties and conveys important geometrical and theoretical insights about linear transformations. It also has some important applications in data science. In this article, I will try to explain the mathematical intuition behind SVD and its geometrical meaning. Instead of manual calculations,
i will be using the SVD method by using the function [U S V] =svd (gray_image,'econ') i have done this compression in the white black mode but it was a buttery work for me thanks to the functions present in the matlab
Citar como
AMIT SURYAVANSHI (2026). IMAGE COMPRESSION USING SVD [SINGULAR VALUE DECOMPOSITION] (https://la.mathworks.com/matlabcentral/fileexchange/157651-image-compression-using-svd-singular-value-decomposition), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2023b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0 |
