TFCNN-BiGRU
Versión 1.0.0 (2,55 KB) por
Prof. Dr. Essam H Houssein
TFCNN-BiGRU with self-attention mechanism for automatic human Emotion Recognition using Multi-Channel EEG Data
A new deep learning architecture that combines a time-frequency convolutional neural network (TFCNN), a bidirectional gated recurrent unit (BiGRU), and a self-attention mechanism (SAM) to categorize emotions based on EEG signals and automatically extract features. The first step is to use the continuous wavelet transform (CWT), which responds more readily to temporal frequency variations within EEG recordings, as a layer inside the convolutional layers, to create 2D scalogram images from EEG signals for time series and spatial representation learning. Second, to encode more discriminative features representing emotions, two-dimensional (2D)-CNN, BiGRU, and SAM are trained on these scalograms simultaneously to capture the appropriate information from spatial, local, temporal, and global aspects.
Citar como
Prof. Dr. Essam H Houssein (2024). TFCNN-BiGRU (https://www.mathworks.com/matlabcentral/fileexchange/165126-tfcnn-bigru), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2024a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Agradecimientos
Inspirado por: EEG SIGNAL ANALYSIS, Deep Learning Tutorial Series
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
TFCNN_BiGRU_SAM
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0 |