BES-GO
Versión 1.0.0 (4,63 KB) por
Prof. Dr. Essam H Houssein
Hybrid Bald Eagle Search (BES) and Growth Optimizer (GO)
In this study, a novel hybrid metaheuristic algorithm, termed (BES-GO), is proposed for solving benchmark structural design optimization problems, including welded beam design, three-bar truss system optimization, minimizing vertical deflection in an I-beam, optimizing the cost of tubular columns, and minimizing the weight of cantilever beams. The performance of the proposed BES-GO algorithm was compared with ten state-of-the-art metaheuristic algorithms: Bald Eagle Search (BES), Growth Optimizer (GO), Ant Lion Optimizer (ALO), Tuna Swarm Optimization (TSO), Tunicate Swarm Algorithm (TSA), Harris Hawk Optimization (HHO), Artificial Gorilla Troops Optimizer (GTO), Dingo Optimizer (DOA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). The hybrid algorithm leverages the strengths of both BES and GO techniques to enhance search capabilities and convergence rates. The evaluation, based on the CEC’20 test suite and the selected structural design problems, shows that BES-GO consistently outperformed the other algorithms in terms of convergence speed and achieving optimal solutions, making it a robust and effective tool for structural Optimization.
Citar como
Prof. Dr. Essam H Houssein (2026). BES-GO (https://la.mathworks.com/matlabcentral/fileexchange/174435-bes-go), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2024b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Agradecimientos
Inspirado por: Bald eagle search Optimization algorithm (BES), CEC2022
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
BES_GO code
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0 |
