Unconstrained Optimization using the Extended Kalman Filter
The Kalman filter is actually a feedback approach to minimize the estimation error in terms of sum of square. This approach can be applied to general nonlinear optimization. This function shows a way using the extended Kalman filter to solve some unconstrained nonlinear optimization problems. Two examples are included: a general optimization problem and a problem to solve a set of nonlinear equations represented by a neural network model.
This function needs the extended Kalman filter function, which can be download from the following link:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18189&objectType=FILE
Citar como
Yi Cao (2026). Unconstrained Optimization using the Extended Kalman Filter (https://la.mathworks.com/matlabcentral/fileexchange/18286-unconstrained-optimization-using-the-extended-kalman-filter), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Signal Processing > Signal Processing Toolbox > Digital and Analog Filters > Digital Filter Design > Adaptive Filters >
Etiquetas
Agradecimientos
Inspirado por: Learning the Extended Kalman Filter
Inspiración para: Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0.0 | update description |
